• Title/Summary/Keyword: Liquid structure

Search Result 1,719, Processing Time 0.026 seconds

Optimum Conditions for Extracting Flavanones from Grapefruit Peels and Encapsulation of Extracts (자몽껍질 유래 플라바논의 최적 추출 및 기능성 소재 캡슐화)

  • Ko, Min-Jung;Kwon, Hye-Lim;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.465-469
    • /
    • 2014
  • The extraction of flavanones such as naringin, narirutin, naringenin, hesperidin, and hesperetin from grapefruit peels was performed using subcritical water extraction (SWE), hot water extraction, and conventional methods such as methanol and ethanol extraction. We analyzed the total flavanone content using high-performance liquid chromatography (HPLC) for each extracting method. Among the three methods, SWE was the optimal method with optimal operating conditions of $170^{\circ}C$ temperature and 10 min operating time. The maximum total flavanone extracted was $86.539{\pm}3.52mg/g$ grapefruit peels. Moreover, we treated the extracts with 60% ${\beta}$-cyclodextrin and then analyzed the surface structure of the encapsulated compounds by field emission-scanning electron microscopy (FE-SEM). The results indicated that the encapsulation in ${\beta}$-cyclodextrin improved solubilization, and the inclusion complex could serve as food supplements.

Analysis of Constituents in Socheongryong-tangs Fermented by Lactic acid bacteria (유산균 발효에 의한 소청룡탕의 발효 전 후 성분 변화 연구)

  • Yang, Min-Cheol;Kim, Dong-Seon;Jeong, Sang-Won;Ma, Jin-Yeul
    • Korean Journal of Oriental Medicine
    • /
    • v.17 no.3
    • /
    • pp.115-121
    • /
    • 2011
  • Objective : The purpose of this study was to investigate the changes in the contents of constituents in Socheongryong-tang (CY) and its fermentations (FCY) with 10 species of lactic acid bacteria. Methods : Ten strains of lactic acid bacteria, Lactobacillus casei 127, L. acidophilus 128, L. casei 129, L. plantarum 144, L. amylophilus 161, L. curvatus 166, L. delbruekil subsp. lactis 442, L. casei 693, B. breve 744, and B. thermophilum 748, were used for the fermentation of Socheongryong-tang. The increased and decreased constituents were identified using HPLC/DAD and various liquid chromatographic techniques, and the structure was elucidated using NMR and MS. These compounds were quantitatively analyzed using an HPLC/DAD system. Results : The increased constituents were identified to be liquiritigenin (1) and cinnamyl alcohol (2), and the decreased constituent was determined to be liquiritin (3). Liquiritigenin (1) and cinnamyl alcohol (2) were increased in all of the FCYs, while liquiritin (3) was decreased. The fermentation of the ten lactic acid bacteria demonstrated that the decomposable rate of these three compounds in FCYs were different. Socheongryong-tang fermented by L. plantarum 144 and L. amylophilus 161 showed the most remarkable changes. Conclusions : CY could be increased antibacterial, neuroprotective, or antiinflammatory effect by fermentation with lactic acid bacteria, especially with L. plantarum and L. amylophilus, considering their known biological activities. In addition, it is expected that this study will help to establish quality control parameters for FCY.

Color Alteration and Acaricidal Activity of Juglone Isolated from Caesalpinia sappan Heartwoods Against Dermatophagoides spp.

  • Lee, Chi-Hoon;Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1591-1596
    • /
    • 2006
  • Acaricidal effects of materials derived from Caesalpinia sappan heartwoods against Dermatophagoides farinae and D. pteronyssinus were assessed and compared with those evidenced by commercial benzyl benzoate and DEET. The observed responses varied according to dosage and mite species. The $LD_{50}$ values of the methanol extracts derived from C. sappan heartwoods were 6.13 and $5.44{\mu}g/cm^3$ against D. farinae and D. pteronyssinus, respectively. Furthermore, the ethyl acetate fraction derived from the methanol extract was approximately 8.71 more toxic than DEET against D. farinae, and 4.73 times more toxic against D. pteronyssinus. The biologically active constituent from the ethyl acetate fraction of C. sappan heartwood extract was purified via silica gel chromatography and high-performance liquid chromatography. The structure of the acaricidal component was analyzed by $GC-MS,\;^1H-NMR,\;^{13}C-NMR,\;^1H-^{13}C\;COSY-NMR$, and DEPT-NMR spectroscopy, and identified as juglone (5-hydroxy-l,4-naphthoquinone). Based on the $LD_{50}$ values of juglone and its derivatives, the most toxic compound against D. farinae was juglone ($0.076{\mu}g/cm^3$), followed by benzyl benzoate ($9.143{\mu}g/cm^3$) and 2methyl-l,4-naphthoquinone ($40.0{\mu}g/cm^3$). These results indicate that the acaricidal activity of C. sappan heartwoods is likely to be the result of the effects of juglone. Additionally, juglone treatment was shown to effect a change in the color of the cuticles of house dust mites, from colorless-transparent to dark brownish-black. Accordingly, as a naturally occurring acaricidal agent, C. sappan heartwood-derived juglone should prove to be quite 'useful as a potential control agent, lead compound, and house dust mite indicator.

Phytotoxicity of dehydrofusaric acid isolated from Fusarium oxysporum against several plants (Fusarium oxysporum이 생산하는 dehydrofusaric acid의 몇 가지 식물 생육에 대한 활성)

  • Hong, Kyung-Sik;Choi, Gyung-Ja;Kim, Heung-Tae;Hwang, In-Taek;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.3
    • /
    • pp.202-208
    • /
    • 2002
  • A phytotoxin was purified by repeated chromatography from liquid cultures of Fusarium oxysporum BG isolated from barnyardgrass. Its chemical structure was determined to be dehydrofusaric acid by mass and NMR spectral analyses. The substance showed a potent phytotoxic activity against growth of duckweed with a $EC_{50}$ value of $1.5{\mu}g/ml$. It also inhibited the root growth of barnyard millet, cress, barnyard grass, and rice cultivar 'Dongjin'. However, it had no inhibitory activity against seed germination of barnyard millet and cress, and the shoot growth of the four plant species.

Optimization of ejector for swirl flow using CFD (CFD를 이용한 회전 운동을 하는 이젝터의 최적화)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • This paper investigates the effect of the rotational motion of a driving fluid generated by a rotational motion device at the inlet of a driving nozzle for a gas-liquid ejector, which is the main device used for ozonated ship ballast water treatment. An experimental apparatus was constructed to study the pressure and suction flow rate of each port of the ejector according to the back pressure. Experimental data were acquired for the ejector without rotational motion. Based on the data, a finite element model was then developed. The rotational motion of the driving fluid could improve the suction efficiency of the ejector based on the CFD model. Based on the CFD results, structure optimization was performed for the internal shape of the rotation induction device to increase the suction flow rate of the ejector, which was performed using the kriging technique and a metamodel. The optimized rotation induction device improved the ejector efficiency by about 3% compared to an ejector without rotational motion of the driving fluid.

Purification of Vasopressin-related Peptide, [Arg8]-vasotocin, from the Brain of Conger Eel (Conger myriaster) (붕장어 (Conger myriaster)의 뇌로부터 Vasopressin-related Peptide, [Arg8]-vasotocin의 정제)

  • Go Hye-Jin;KIM Chan-Hee;KIM Eun Jung;KIM In Hye;PARK Hee Yeon;YOON Ho Dong;HONG Yong-Ki;PARK Nam Gyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • Vasopressin (VP)-related peptide was purified from the brain extract of conger eel (Conger myriaster) by reverse-phase, ion-exchange high performance liquid chromatography (HPLC). This peptide with a molecular weight of 1,051.2 Da was determined as $H-Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Arg-Gly-NH_2$, whose Cys residues made an intramolecular disulfide bridge by the automated amino acid sequence analysis, MALDI- TOF mass spectrometry. It's sequence was confirmed by identity of the elution position with the synthetic peptide in HPLC system. As a result of homology investigation, the primary structure of this peptide was the same as that of VP-superfamily member, $[Arg^8]-vasotocin$. The synthetic peptide showed a contractile activity at a minimal effective concentration of $10^{-10}\;M$ on the intestinal smooth muscle of goldfish.

Low-temperature sintering and microwave dielectric properties of $ZnAl_2O_4$ with ZnO-$B_2O_3-SiO_2$ glass (ZnO-$B_2O_3-SiO_2$ 유리가 첨가된 $ZnAl_2O_4$의 저온 소결 및 마이크로파 유전 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Kim, Shin;Kim, Yun-Han;Lee, Joo-Sik;Kim, Kyung-Mi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.265-265
    • /
    • 2007
  • In the present work, we have studied low temperature sintering and microwave dielectric properties of $ZnAl_2O_4$-zinc borosilicate (ZBS, 65ZnO-$25B_2O_3-10SiO_2$) glass composites. The focus of this paper was on the improvement of sinterability, low dielectric constant, and on the theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-ZBS glass composites, respectively. The $ZnAl_2O_4$ with 60 vo1% ZBS glass ensured successful sintering below $900^{\circ}C$. It is considered that the non-reactive liquid phase sintering (NPLS) occurred. In addition, $ZnAl_2O_4$ was observed in the $ZnAl_2O_4$-(x)ZBS composites, indicating that there were no reactions between $ZnAl_2O_4$ and ZBS glass. $ZnB_2O_4\;and\;Zn_2SiO_4$ with the willemite structure as the secondary phase was observed in the all $ZnAl_2O_4$-(x)ZBScomposites. In terms of dielectric properties, the application of the $ZnAl_2O_4$-(x)ZBS composites sintered at $900^{\circ}C$ to LTCC substrate were shown to be appropriate; $ZnAl_2O_4$-60ZBS (${\varepsilon}_r$= 6.7, $Q{\times}f$ value= 13,000 GHz, ${\tau}_f$= -30 ppm/$^{\circ}C$). Also, in this work was possible theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-(x)ZBS composites.

  • PDF

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

A Study on Microstructures and Cryogenic Mechanical Properties of Electron Beam Welds between Cast and Forged Inconel 718 Superalloys for Liquid Rocket Combustion Head (액체로켓 연소기용 Inconel 718 주조 및 단조 합금의 전자빔 용접부 미세조직 및 극저온 특성)

  • Hong, Hyun-Uk;Bae, Sang-Hyun;Kwon, Soon-Il;Lee, Je-Hyun;Do, Jeong-Hyeon;Choi, Baig-Gyu;Kim, In-Soo;Jo, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.50-57
    • /
    • 2013
  • Characterization of microstructures and cryogenic mechanical properties of electro beam (EB) welds between cast and forged Inconel 718 superalloys has been investigated. Optimal EBW condition was found in the beam current range of 36~39 mA with the constant travel speed of 12 mm/s and arc voltage of 120 kV for 10 mm-thick specimens. Electron beam current lower than 25 mA caused to occur the liquation microfissuring in cast-side heat affected zone (HAZ) of EB welds. The HAZ liquation microfissure was found on the liquated grain boundaries with resolidified ${\gamma}/Laves$ and ${\gamma}/NbC$ eutectic constituents. EBW produced welds showing a fine dendritic structure with relatively discrete Laves phase due to fast cooling rate. After post weld aging treatment, blocky Laves phase and formation of ${\gamma}^{\prime}+{\gamma}^{{\prime}{\prime}}$ strengtheners were observed. Presence of primary strengthener and coarse Laves particles in PWHT weld may cause to reduce micro-plastic zone ahead of a crack, leading to a significant decrease in Charpy impact toughness at $-196^{\circ}C$. Fracture initiation and propagation induced by Charpy impact testing were discussed in terms of the dislocation structures ahead of crack arisen from the fractured Laves phase.

A Numerical study on the Moisture Transport of Concrete Tunnel Linings with the Sprayable Waterproofing Membrane (뿜칠 방수 멤브레인이 시공된 터널 라이닝의 수분이동에 관한 수치해석 연구)

  • Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.212-219
    • /
    • 2016
  • The sprayable waterproofing membrane is installed between shotcrete to provide crack bridging and hence prevent flow of liquid water as a waterproofing system. Because of its material characteristics, the sprayable membrane can be constructed at more complex structure than sheet membrane. The main component of the sprayable waterproofing membrane is a polymer-based material, therefore, moisture can migrate through sprayable waterproofing membrane materials by capillary and vapor diffusion mechanisms. The moisture transport mechanisms can have an influence on the degree of saturation and may influence the pore pressure and risk of freeze-thaw damage on concrete linings and membrane. In this study, long-term hygrothermal behavior was simulated with considering moisture transport and long-term effects on saturation of tunnel linings. From the simulation, due to water absorption and vapor transport properties of sprayable membrane, change of relative humidity and water content in tunnel lining can be evaluated.