• Title/Summary/Keyword: Liquid sheet

Search Result 249, Processing Time 0.032 seconds

Liquid Atomization and Spray Characteristics in Electrostatic Spray of Twin Fluids (2유체 정전분무의 액체 미립화 및 분무 특성)

  • Kim, Jeong-Heon;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1552-1560
    • /
    • 2001
  • This paper presents the experimental results of a study undertaken to develop an electrostatic spray system for a combustion application. The characteristics of the liquid atomization and the droplet dispersion in the electrostatic spray of twin fluids were investigated by the optical measurement techniques. The processes associated with the break-up of charged jets were also observed using the laser sheet visualization. The diameter and velocity of droplets were simultaneously measured using the phase Doppler measurement technique. The electrostatic atomization of the liquid fuel depended primarily on the charging voltage and the flow rate, but the dispersion of droplets depended significantly on the aerodynamic flow. Aerodynamic influences on the liquid atomization decreased with an increase of the charging voltage. Consequently, the liquid atomization and the droplet dispersion could be independently controlled using the electrostatic and aerodynamic mechanisms.

Effect of Asphalt Pavement Conditions on Tensile Adhesive Strength of Waterproofing System on Concrete Bridge Deck (아스팔트 포장 조건이 교면방수 시스템의 인장접착강도에 미치는 영향)

  • Lee, Byung-Duck;Park, Sung-Ki;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.2 s.16
    • /
    • pp.15-24
    • /
    • 2003
  • The performance of waterproofing system (WPS) is known to be a function of many complex interaction of material factors, design details, and the quality of construction, but it is mainly determined by the bond strength, which is measured by tensile adhesive strength (TAS) test. to the concrete bridge deck. In this research, eight waterproofing membranes were selected from commercial market and the tensile adhesive characteristics of the WPS on concrete bridge deck were investigated in view of various factor in asphalt pavement. The factors include type of asphalt mixture, pavement thickness, paving temperature and influence of wheel loading. TAS test of different asphalt pavement types showed that TAS of WPS under SMA (Stone Mastic Asphalt) pavement was greater than that under dense asphalt pavement. TAS of sheet membranes was improved as the compaction temperature of asphalt concrete increase, but TAS of liquid membranes were not. The influence of thickness of pavement val minimal with given laboratory test condition. TAS of sheet membranes after wheel tracking test were in the order of the sites under wheel path (UWP), before wheel tracking (BWT) and nearby wheel path (NWP). Since TAS of the same WPS of UWP was higher than TAS of BWT, wheel loading had function of pressing WPS resulting in higher adhesive strength. But liquid membranes were variable on types. The feature of detached interface after TAS test showed that sheet types were all detached in between deck concrete and WPS, and liquid types were detached in between asphalt pavement and WPS.

  • PDF

Analysis of droplet formation under sloshing phenomena in liquid fuel tank (액체 연료 탱크 내 슬로싱 현상에서의 액적 형성 분석)

  • Sungwoo Park;Jinyul Hwang
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2023
  • With the global shift from a carbon-based economy to a hydrogen-based economy, understanding the sloshing phenomenon and its impact on boil-off rate (BOR) in liquid hydrogen (LH2) tank trailers is crucial. Here, we analyze the primary breakup process under sloshing phenomena in a liquid fuel tank. We observe the growth of multiple holes on the sheet-like structures and the formation of ligament structures reminiscent of jet atomization. Through the extraction of three-dimensional liquid regions, we analyze the geometrical characteristics of these regions, enabling the classification of sheets, ligaments, and droplets. The present findings could contribute to understanding the breakup mechanism and hold potential for the development of strategies aimed at minimizing BOR.

An Experimental Study on the Atomization Characteristics of the Rotary Cup Atomizer (회전컵 무화기의 미립화 특성에 관한 실험적 연구)

  • Jin, S.B.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.14-21
    • /
    • 2001
  • Rotary atomizer is widely used in practical application ranging from combustion, cooling, spray drying, agriculture, chemical system. Rotary cup atomizer has some advantages such as extreme versatility and liquid atomization successfully varying widely in viscosity. In rotary atomization, the feed liquid is centrifugally accelerated to high velocity and the liquid extends over the rotating surface as a thin film before being discharged into an atmosphere. The degree of rotary atomization depends upon peripheral speed, feed rate, liquid properties and atomizer design. An important asset is that thickness and uniformity of the liquid sheet can readily be controlled by regulating the liquid flow rate and the rotational speed. LDPA(Laser Diffraction Particle Analyser) and image aquisition system are used to measure drop size distribution and spray pattern. The atomization characteristics of the rotary cup atomizer is investigated experimentally by varing the liquid feed rate, rotary cup speed and air velocity for atomization. As a results, the effect of air velocity on the atomization characteristics such as drop size and spray uniformity is considerably greater than variation of those with liquid feed rate.

  • PDF

NUMERICAL METHODS FOR CAVITATING FLOW

  • SHIN Byeong Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper, some numerical methods recently developed for gas-liquid two-phase flows are reviewed. And then, a preconditioning method to solve cavitating flow by the author is introduced. This method employs a finite-difference Runge-Kutta method combined with MUSCL TVD scheme, and a homogeneous equilibrium cavitation model. So that it permits to treat simply the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Finally, numerical results such as detailed observations of the unsteady cavity flows, a sheet cavitation break-off phenomena and some data related to performance characteristics of hydrofoils are shown.

  • PDF

Experimental Investigation on Machining Feasibility of Micro Patterns using a Single Crystal Diamond Tool (단결정 다이아몬드 공구를 이용한 미세 패턴 가공성에 대한 실험적 분석)

  • Kim, Hyun-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.76-81
    • /
    • 2012
  • The continuing demand for increasingly slimmer and brighter liquid crystal display(LCD) panels has led to an increased focus on the role of the light guide panels(LGPs) or optical films that are used to obtain diffuse, uniform light from the backlight unit(BLU). And the most basic process in the production of such BLU components is the micromachining. LCD BLUs comprise various optical elements such as a LGP, diffuser sheet, prism sheet, and protector sheet with micro patterns. High aspect ratio patterns are required to reduce the number of sheets and enhance light efficiency, but there is a limit to the aspect ratio achievable for a given material and cutting tool. Therefore, this study comprised a series of experimental evaluations conducted to determine the machining feasibility in microcutting various aspect ratio patterns on electroless nickel plated die materials when using single-crystal diamond tools. Cutting performance was evaluated at various cutting speeds and depths of cut using different machining methods and machine tools.

Design and Test Rig Construction for Piezoelectric Pump having Sheet Type Check Valve (시트 체크밸브를 갖는 압전펌프 설계 및 펌프 실험장치 제작)

  • 함영복;유진산;윤소남;최성대
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1442-1445
    • /
    • 2003
  • In precision machinery industry, it's required with small size and low noise design to using in constant liquid delivery equipment. To accomplish it's purpose, we designed the check valve with rubber sheet of circle shapes as a possible assembly in pump body. The test equipment for piezoelectric pump was able to test pressure-flow property and output property of piezoelectric pump by variation(magnitude of voltage and frequency) of input power.

  • PDF

Finite Element Analysis of Axisymmetric Sheet Hydroforming Processes (축대칭 박판 액압성형 공정의 유한요소 해석)

  • Jeong, Y. H.;Lee, S. H.;Keum, Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.26-29
    • /
    • 1999
  • The sectional forming analysis program for analyzing the hydroforming processes of axisymmetric sheet parts was tleveloped. The rigid-viscoplastic FEM formulation based on membrane theory was derived, wh~cta simi~ltaneously solve force equilibrium as well as non-penetration condition. Hill's non-quadratic normal anisotropic yield theory(1979) was used for material behaviour. For describing the liquid pressure iaction, the flexible tool concept was introduced. Isotropic hardening law was also assumed. To verify the \,alidity of the formulation, the stepped cup forming process as well as the hydrostatic bulging test were \imnlated. Simulation results agreed well with Finckenstein and experimental ones.

  • PDF

Finite Element Analysis for forming of bulk amorphous materials (벌크 아몰퍼스 성형의 유한요소 해석)

  • Yoon, S.H.;Go, H.K.;Kim, Y.I.;Lee, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1804-1809
    • /
    • 2003
  • The purpose of this study is to clarify the bulk/sheet forming characteristics of bulk amorphous alloys in the supercooled liquid state. The temperature dependences of Newtonian viscosities of amorphous materials are obtained based on the previous experimental works. Finite element analyses for compression forming and sheet deep drawing of amorphous materials are performed. Effects of friction coefficients and temperature are examined and formability of amorphous material is explained in detail.

  • PDF