• Title/Summary/Keyword: Liquid pool

Search Result 161, Processing Time 0.031 seconds

Experimental Study of the Evaporation of Spreading Liquid Nitrogen (확산하는 액체질소의 증발에 관한 실험적 연구)

  • KIM, MYUNGBAE;CHOI, BYUNGIL;KIM, TAE-HOON;DO, KYHYUNG;HAN, YONGSHIK;CHUNG, KYUNGYUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.466-472
    • /
    • 2018
  • The investigation of cryogenic liquid pool spreading is an essential procedure to assess the hazard of cryogenic liquid usage. In this experimental study, to measure the evaporation velocity when the pool is spreading, liquid nitrogen was continuously released onto unconfined concrete ground. Almost all of the reported results are based on a non-spreading pool in which cryogenic liquid is instantaneously poured onto bounded ground for a very short period of time. A simultaneous measurement of the pool location using thermocouples and of the pool mass using a digital balance was carried out to measure the evaporation velocity and the pool radius. A greater release flow rate was found to result in a greater average evaporation velocity, and the evaporation velocity decreased with the spreading time and the pool radius.

Effect of Frictional Resistance Force on a Liquid Pool Spreading Model with Continuous and Instantaneous Release (마찰저항이 연속누출과 순간누출을 가지는 액체 풀의 확산에 미치는 영향에 대한 해석적 연구)

  • Kim, Tae Hoon;Choi, Byung-Il;Kim, Myungbae;Do, Kyu Hyung;Han, Yong-Shik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.487-494
    • /
    • 2013
  • In this study, solutions for a liquid pool spreading model with continuous and instantaneous release are discussed based on the model used in the FERC's report. The effects of the release time on the liquid pool volume and radius are investigated for the continuous release. For the continuous release with the frictional resistance force in the liquid pool spreading model, the vaporization time decreases as the release time increases. On the other hand, for the continuous release without the frictional resistance force in the liquid pool spreading model, the vaporization time increases as the release time increases. These phenomena are deeply related to the pool radius. In addition, the effects of the initial pool radius for the instantaneous release in the liquid pool spreading model are discussed. For the case with the frictional resistance force in the liquid pool spreading model, as reducing release time in the model with the frictional resistance force for the continuous release, the solution for a continuous release approaches to that for an instantaneous release. On the contrary to this, the pool volume and radius for the instantaneous release without the frictional resistance force are totally different from those for the continuous release without the frictional resistance force.

Electrochemical Behaviors of Bi3+ Ions on Inert Tungsten or on Liquid Bi Pool in the Molten LiCl-KCl Eutectic

  • Kim, Beom Kyu;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • Liquid Bi pool is a candidate electrode for an electrometallurgical process in the molten LiCl-KCl eutectic to treat the spent nuclear fuels from nuclear power plants. The electrochemical behavior of Bi3+ ions and the electrode reaction on liquid Bi pool were investigated with the cyclic voltammetry in an environment with or without BiCl3 in the molten LiCl-KCl eutectic. Experimental results showed that two redox reactions of Bi3+ on inert W electrode and the shift of cathodic peak potentials of Li+ and Bi3+ on liquid Bi pool electrode in molten LiCl-KCl eutectic. It is confirmed that the redox reaction of lithium with respect to the liquid Bi pool electrode would occur in a wide range of potentials in molten LiCl-KCl eutectic. The obtained data will be used to design the electrometallurgical process for treating actinide and lanthanide from the spent nuclear fuels and to understand the electrochemical reactions of actinide and lanthanide at liquid Bi pool electrode in the molten LiCl-KCl eutectic.

Experimental Study of Liquid Nitrogen Pool Spreading with Continuous Spill (연속적으로 누출되는 액체질소 풀의 확산에 관한 실험적 연구)

  • Choi, Jaewhan;Kim, Myungbae;Choi, Byungil;Kim, Taehoon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.174-180
    • /
    • 2014
  • Experimental study of liquid nitrogen pool spread is carried out when it is continuously released. The liquid nitrogen spreads over a cement mortar plate with continuous release. Evaporation rate per unit area of the liquid nitrogen is measured using a digital balance, and a spreading distance of the liquid pool is measured by thermocouples. It is discovered that the evaporation rate per unit area of liquid nitrogen tends to decrease as the liquid pool spreads.

Experimentally Evaluation of a Liquid Pool Spreading Model with Continuous Release (연속누출을 가지는 액체 풀 확산 모델의 실험적 평가)

  • KIM, TAEHOON;DO, KYU HYUNG;KIM, MYUNGBAE;HAN, YONG-SHIK;CHOI, BYUNG-IL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.659-665
    • /
    • 2015
  • In this study, an experimental investigation is performed for evaluation of a liquid pool spreading model with continuous release. The model considered in this study was developed based on a concept which means that the liquid pool spreading is governed by a balance between an inertia force from gravity and a frictional force from friction with the ground under the whole base of the liquid pool. For evaluation of the model, experimental study is performed. Experimental apparatus is setup for measuring release rate, spreading velocity, and evaporation rate from a liquid pool. The experimental results are compared with results from the model. By applying release and evaporation rates obtained from experiments to solving the model, liquid pool radius variation according to time can be obtained. For evaluation of an effect of friction force in the spreading model, results obtained from the models with and without the friction force are compared with those obtained from the experiments. As a result, it is shown that there exists a large deviation between the results obtained from the model without the friction force and the experimental results. On the other hand, the tendency of liquid pool radius variation according to time is similar between the results obtained from the model without the friction force and the experimental results.

A study on the pulse boiling occurring inside the liquid pool of a closed two-phase thermosyphon (밀폐형 2상 열사이폰의 Pool 내부 Pulse Boiling에 관한 연구)

  • Kim, Cheol-Ju;Mun, Seok-Hwan;Gang, Hwan-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1254-1261
    • /
    • 1997
  • Pulse boiling, the unsteady periodic boiling phenomenon appearing in the evaporator of thermosyphons was investigated by many researchers. In the present study investigations were conducted to examine the evolution of flow patterns at the evaporator, and changes in thermodynamic state that each of liquid pool and vapor experiences through 1 cycle of pulse boiling process. For wall and liquid pool the degree of superheat for the onset of nucleation was examined. It revealed that the degree of superheat increased with the increase of pulse period, reaching to 16.5 deg.C and 23 deg.C for liquid pool and evaporator wall respectively at .tau.=80 sec. The data on flow patterns obtained through series of operation tests were plotted in the coordinates of heat flux and vapor pressure to get a regime map. Further this map could be used to figure out the conditions of pulse boiling for a thermosyphon.

Examination on Liquid Pool Fire Extinguishment Performance of Twin-fluid Nozzle (2유체노즐의 액체풀 화재 소화 성능에 대한 검토)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.59-64
    • /
    • 2017
  • In the present experimental study, the liquid pool fire extinguishment performance of twin-fluid nozzle was preliminarily examined. For the liquid pool fire, the ethanol of 1200 ml (volume) was prepared, and two kinds of air flow rate conditions (40 l/min and 70 l/min) were tested at the constant water flow rate condition of 632 ml/min. In the present experimental ranges, the fire extinguishment experiments were carried out using the twin-fluid nozzle and its spray characteristics (i.e., SMD (Sauter Mean Diameter) and flow distribution) were investigated. As a result, at the higher air flow rate, the liquid pool fire was extinguished quickly and successfully, which was discussed using the visualization and spray characteristics of twin-fluid nozzle. In addition, through the comparison with some of previous results, it was found that potentially, the twin-fluid nozzle can extinguish the liquid pool fire under the smaller water flow rate condition, as compared with the single-fluid nozzle.

A Numerical Analysis of a Drop Impact on the Liquid Surface (액적의 액막 충돌에 대한 수치해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2568-2573
    • /
    • 2008
  • A drop impact on the liquid film/pool generates several phenomena such as the drop floating, bouncing, formation of vortex ring, jetting, bubble entrapment and splashing. These phenomena depend on the impact velocity, the drop size, the drop properties and the liquid film/pool thickness. These parameters can be summarized by four main dimensionless parameters; Weber number, Ohnesorge number, Froude number and non-dimensional film/pool thickness. In the present study, the phenomena of the splashing and bubble entrapment due to the drop impact on the liquid film/pool were numerically investigated by using a Level Set method for the sharp interface tracking of two distinct phases. After the drop impact, the splashing phenomena with the crown formation and spreading were predicted. Under the specific conditions, the bubble entrapment at the base of the collapsing cavity due to the drop impact was also observed. The numerical results were compared to the available experimental data showing good agreements.

  • PDF

Semiempirical model for wet scrubbing of bubble rising in liquid pool of sodium-cooled fast reactor

  • Pradeep, Arjun;Sharma, Anil Kumar
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.849-853
    • /
    • 2018
  • Mechanistic calculations for wet scrubbing of aerosol/vapor from gas bubble rising in liquid pool are essential to safety of sodium-cooled fast reactor. Hence, scrubbing of volatile fission product from mixed gas bubble rising in sodium pool is presented in this study. To understand this phenomenon, a theoretical model has been setup based on classical theories of aerosol/vapor removal from bubble rising through liquid pools. The model simulates pool scrubbing of sodium iodide aerosol and cesium vapor from a rising mixed gas bubble containing xenon as the inert species. The scrubbing of aerosol and vapor are modeled based on deposition mechanisms and Fick's law of diffusion, respectively. Studies were performed to determine the effect of various key parameters on wet scrubbing. It is observed that for higher vapor diffusion coefficient in gas bubble, the scrubbing efficiency is higher. For aerosols, the cut-off size above which the scrubbing efficiency becomes significant was also determined. The study evaluates the retention capability of liquid sodium used in sodium-cooled fast reactor for its safe operation.

Second-Order Perturbation Solutions of Liquid Pool Spreading with Instantaneous Spill (순간 누출된 액체의 확산에 관한 2차 섭동 해)

  • Kim, Myung-Bae;Do, Kyu-Hyung;Han, Yong-Shik;Choi, Byung-Il
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.513-518
    • /
    • 2010
  • In the present work the second-order perturbation solutions of the simple physical model for liquid pool spreading is obtained for the case of instantaneous spill. To generalize the solution governing equations are non-dimensionalized, and two dimensionless parameters, dimensionless evaporation rate and aspect ratio of the initial pool, are identified to control the governing equations. The dimensional governing equations have three parameters. The second-order solution improves fairly the first-order solution for the pool volume.