• Title/Summary/Keyword: Liquid forming

Search Result 361, Processing Time 0.024 seconds

The Characteristics of Microstructure in the Semi-solid State of SKH51 at High Frequency Induction Heating (유도가열에 따른 SKH51의 반응고 미세조직 특성 연구)

  • Lee, Sang Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.3
    • /
    • pp.126-133
    • /
    • 2012
  • Semi-solid forming of the high melting point alloys such as steel is a promising near-net shape forming process for decreasing manufacturing costs and increasing the quality of the final products. This paper presents the microstructure characteristics of SKH51 (high speed tool steel) during heating and holding in the mushy zone between $1233^{\circ}C$ and $1453^{\circ}C$, which has been measured by differential scanning calorimetry (DSC). The results of heating/holding experiments showed that the grain size and the liquid fraction increased gradually with temperature up to $1350^{\circ}C$. The drastic grain growth occurred at heating above $1380^{\circ}C$. The strain-induced melt-activated (SIMA) process has been applied to obtain globular grains in the billet materials. Working by mechanical upsetting and successive heating of SKH51 into the temperatures in the mushy zone resulted in globular grains due to recrystallization and partial melting.

Effect of Pressurless Annealing Temperature on the Properties of α-SiC-WC Electroconductive Ceramic Composites. (α-SiC-WC 電導性 세라믹 複合體의 特性에 미치는 無加壓 Annealing 溫度)

  • Sin, Yong Deok;Ju, Jin Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.242-242
    • /
    • 2004
  • The composites were fabricated 61 vol.%α-α-SiC and 39vol.% WC powders with the liquid forming additives of 12wt% Al₂O₃+Y₂O₃ by pressureless annealing at 1700, 1800, 1900℃ for 4 hours. The result of phase analysis of composites by XRD revealed α-SiC(2H), WC, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density, the flexural strength, fracture toughness and Young′s modulus showed respectively the highest value of 99.4%, 375.76㎫, 5.79㎫ㆍ$m^{\frac{1}{2}}$, and 106.43㎬ for composite by pressureless annealing temperature 1900℃ at room temperature. The electrical resistivity showed the lowest value of 1.47×$10^{-3}$/Ω·㎝ for composite by pressureless annealing temperature 1900℃ at 25℃. The electrical resistivity of the α-SiC-WC composites was all positive temperature cofficient resistance (PTCR) in the temperature ranges from 25℃ to 500℃.

Effect of Pressurless Annealing Temperature on the Properties of $\alpha$-SiC-WC Electroconductive Ceramic Composites. ($\alpha$-SiC-WC 전도성 세라믹 복합체의 특성에 미치는 무가압 Annealing 온도)

  • 신용덕;오상수;주진영
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.241-247
    • /
    • 2004
  • The composites were fabricated 61 vol.%$\alpha$-$\alpha$-SiC and 39vol.% WC powders with the liquid forming additives of 12wt% $Al_2$O$_3$+Y$_2$O$_3$ by pressureless annealing at 1700, 1800, 190$0^{\circ}C$ for 4 hours. The result of phase analysis of composites by XRD revealed $\alpha$-SiC(2H), WC, and YAG(Al$_{5}$ Y$_3$O$_{12}$ ) crystal phase. The relative density, the flexural strength, fracture toughness and Young's modulus showed respectively the highest value of 99.4%, 375.76㎫, 5.79㎫ㆍm$\frac{1}{2}$, and 106.43㎬ for composite by pressureless annealing temperature 190$0^{\circ}C$ at room temperature. The electrical resistivity showed the lowest value of 1.47${\times}$10$^{-3}$ $\Omega$$.$cm for composite by pressureless annealing temperature 190$0^{\circ}C$ at $25^{\circ}C$. The electrical resistivity of the $\alpha$-SiC-WC composites was all positive temperature cofficient resistance (PTCR) in the temperature ranges from $25^{\circ}C$ to 50$0^{\circ}C$.

Study on the Fabrication of Mg Alloy Sheet by a Semi-Solid Forming Process (반고상 성형법에 의한 Mg 합금 박판재의 제조에 관한 연구)

  • Kim, Jeong-Min;Park, Bong-Koo;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.22 no.5
    • /
    • pp.245-251
    • /
    • 2002
  • Cast AZ91 and extruded AM50 alloys were isothermally heated as solid/liquid coexistent temperatures, and semi-solid formed into sheets. Mold filling ability of semi-solid slurry with different liquid fractions was investigated in relation to process variables such as injection speed and mold temperature. Relatively uniform distribution of solid particle size and liquid fraction were observed throughout the semi-solid formed sheet. AZ91 alloy sheets were also manufactured by conventional die casting and compared with the semi-solid formed. It was found that the surface was more smooth and the dimensional accuracy was higher in case of the semi-solid formed.

Yield and Compression Behavior of Semi-Solid Material by Upper Bound Method (상계법에 의한 반융용 재료의 항복과 압축거동)

  • 최재찬;박형진;박준홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.195-198
    • /
    • 1995
  • In Semi-Solid Forging, it is necessary to control the forming variables accurately in order to make near-net-shape products. Generally, the defects of products may occur due to liquid segregation which can be caused by the degree of deformation and condition of friction in Semi-Solid Forging, where the segregation is to be predicted by flow analysis. This paper presents the feasibility of theoretical analysis model using the new yield function which is proposed by Doraivelu et al. to the flow analysis of the semi-solid dendritic Sn-15%Pb alloys instead of adopting the yield criterion of Shima & Oyane which is used by Charreyron and usefulness of the adopted yield function. The distribution of the liquid fraction at various strains in radial direction and the influence of friction are estimated by Upper Bound Method.

  • PDF

The Effect of Gate Shape for Semi-Solid Forging Die on the Filling Limitation (반용융 단조금형의 Gate 형상이 성형성에 미치는 영향)

  • Son Y. I.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.178-184
    • /
    • 2000
  • To obtain high quality component with thixoforming process, it is important that the homegeneous distribution of solid particles without liquid segregation. In closed-die semi-solid forging process, liquid segregation is strongly affected by injection velocity than any other process variables because the material has to travel relatively long distance to fill the cavity through a narrow gate before solidification begins. The optimal injection velocity and die temperature were investigated to fabricate near-net-shape compressor component called Al frame.

  • PDF

Alignment Effects for Nematic Liquid Crystal using a-C:H Thin Films Deposited at Rf Bias Condition (RF 바이어스 조건하에서 증착된 a-C:H 박막을 이용한 네마틱 액정의 배향 효과)

  • 황정연;박창준;서대식;안한진;백홍구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.526-529
    • /
    • 2004
  • The nematic liquid crysta](NLC) aligning capabilities using a-C:H thin film deposited at the three kinds of rf bias condition were investigated. A high pretilt angle of NLC on low substrate rf bias applied a-C:H thin films was observed and the low pretilt angle of the NLC on high substrate rf bias applied a-C:H thin films was observed. Consequently, the high NLC pretilt angle and the good aligning capabilities of LC alignment by the IB alignment method on the a-C:H thin film deposited at 1 W rf bias condition can be achieved. It is considered that pretilt angle of the NLC may be attributed to substrate rf bias condition and IB energy time. Therefore, LC alignment is affected by topographical structure forming strong IB energy.

Yield and Compression Behavior of Semi-Solid Materials by Upper-Bound Method (상계법에 의한 반용융 재료의 항복과 압축거동)

  • 최재찬;박형진;박준홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.139-144
    • /
    • 1998
  • In Semi-Solid Forging, it is necessary to control the forming variables accurately in order to make near-net-shape products. Generally, the defects of products may occur due to liquid segregation which can be caused by the degree of deformation and strain rate, and condition of friction in Semi-Solid Forging, where the segregation is to be predicted by flow analysis. This paper presents the feasibility of theoretical analysis model using the new yield function for compressible P/M materials which is proposed by Doraivelu et at. to the flow analysis of the semi-solid dendritic Sn-15%Pb alloys instead of adopting the yield criterion of Shima and Oyane which is used by Charreyron and Flemings. The simple compression process is taken into consideration as the model to confirm the usefulness of the adopted yield function. The distribution of the liquid fraction at various strains and strain rates in radial direction, and the influence of friction are estimated by upper-bound method.

  • PDF

Structure -Properties Relations of Polypropylene/ Liquid Crystalline Polymer Blends

  • Sahoo, N.G.;Das, C.K.;Jeong, Hye-Won;Ha, Chang-Sik
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.224-230
    • /
    • 2003
  • The blends of polypropylene (PP) with glass filled thermotropic liquid crystalline polymer (LCP-g) have been prepared by melt mixing techniques at different blend ratios. The thermal, dynamic mechanical, crystalline and morphological characteristics of these blends were investigated. Higher percent crystallinity was observed for 10% level of LCP-g in the blend in comparison to that of other blend ratios. The thermal stability increased with LCP-g concentration in the blend with PP. The variation of storage modulus, stiffness and loss modulus as a function of blend ratios suggested the phase inversion at the 50% level of LCP-g in the blend. The scanning electron microscopy (SEM) photographs showed the creation of voids and destruction of the fiber structures during the dynamic mechanical measurements. Processing behavior of the blends depended on the fiber forming characteristics of LCP-g, which again varied with the molding temperatures.

Formation of Dual Threshold in a Vertical Alignment Liquid Crystal Device

  • Choi, Sun-Wook;Jin, Huilian;Kim, Ki-Han;Lee, Ji-Hoon;Kim, Hoon;Shin, Ki-Chul;Kim, Hee Seop;Yoon, Tae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.170-173
    • /
    • 2012
  • We present a method that enables dual threshold voltages in a vertical alignment liquid crystal device, through which the gamma shift can be reduced with no subsequent decrease in the contrast ratio. By forming polymer layers, the threshold voltage shift is accomplished through the utilization of the voltage drop effect. We expect that the proposed method can be applied to the conventional 4-domain mode in order to achieve an 8-domain mode without the need for complex driving schemes.