• Title/Summary/Keyword: Liquid formability

Search Result 33, Processing Time 0.024 seconds

Nanostructured Bulk Ceramics (Part IV. Polymer Precursor Derived Nanoceramics)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.205-209
    • /
    • 2010
  • In the last (fourth) section, the discussion will entail a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of $1400^{\circ}C$. This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method.

A Study on Spring Back in Sheet Forming of Amorphous Alloys (아몰퍼스 판재 성형의 스프링 백에 관한 연구)

  • Yoon S.H.;Lee Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1757-1760
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die corner radius, friction, blank holder force, clearance and initial forming temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling and two modes of spring backs are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

  • PDF

Advancement in Powder Metallurgy of Aluminum Alloys

  • Takeda, Yoshinobu
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.340-344
    • /
    • 1998
  • Along with the growth of conventional ferrous powder metallurgy (PM), PM of aluminum alloys has been intensively investigated in Japan. Although rapidly solidified aluminum alloy powder was first used in the USA,/sup 1)/ commercialization for consumer market was first realized in Japan./sup 2)/ In order to achieve the viable cost-performance including Near Net Shape (NNS) formability, we developed three processes, powder extrusion, powder forging and sintering. The new powder extrusion process does not use either capsulation or vacuum degassing. The new powder forging does not need lateral flow. The new sintering process does not use liquid phase. The performance achieved by the processes is outstanding mechanical or physical properties that has potential to substitute cast iron, steel, titanium Metal Matrix Composite (MMC) or Ingot Metallurgy (IM) aluminum alloys. Cooperation with customers, powder suppliers and research associations contributed to the advancement of PM aluminum alloys in Japan.

  • PDF

Spring Back in Amorphous Sheet Forming at High Temperature (아몰퍼스 고온 판재성형시 스프링백)

  • Lee Y-S
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.751-755
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die comer radius, friction, blank holder force, clearance and initial funning temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling, and two modes of spring back are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

Finite Element Analysis for forming of bulk amorphous materials (벌크 아몰퍼스 성형의 유한요소 해석)

  • Yoon, S.H.;Go, H.K.;Kim, Y.I.;Lee, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1804-1809
    • /
    • 2003
  • The purpose of this study is to clarify the bulk/sheet forming characteristics of bulk amorphous alloys in the supercooled liquid state. The temperature dependences of Newtonian viscosities of amorphous materials are obtained based on the previous experimental works. Finite element analyses for compression forming and sheet deep drawing of amorphous materials are performed. Effects of friction coefficients and temperature are examined and formability of amorphous material is explained in detail.

  • PDF

High Temperature Deformation Behavior and Estimation for Formability of Zr55Cu30Al10Ni5 Bulk Metallic Glass (Zr계 비정질 합금의 고온 변형거동과 성형성 예측)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.309-312
    • /
    • 2007
  • Deformation behavior of $Zr_{55}Cu_{30}Al_{10}Ni_5$(at. %) bulk metallic glass(BMG) fabricated by suction casting method has been investigated at elevated temperatures in this study. The BMG was first verified to have an amorphous structure with the analysis of X-ray diffraction(XRD) and differential scanning calorimetry(DSC) data. A series of compression tests has consequently been performed in the region of supercooled liquid temperature to investigate the behavior of high temperature deformation. A transition from Newtonian to non-Newtonian flow appeared to take place depending upon both the strain rate and test temperature. A processing map based on a dynamic materials model has been constructed to estimate a feasible forming condition for this BMG alloy.

Trends of Low-temperature Bonding Technologies using Gallium and Gallium Alloys (갈륨 및 갈륨 합금을 이용한 저온접합 기술 동향)

  • Hong, Teayeong;Shim, Horyul;Sohn, Yoonchul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.11-18
    • /
    • 2022
  • Recently, as flexible electronic device-related technologies have received worldwide attention, the development of wiring and bonding technologies using liquid metals is required in order to improve problems such as formability in the manufacturing process of flexible devices and performance and durability in the bending state. In response to these needs, various studies are being conducted to use gallium and gallium-based alloys (eutectic Ga-In and eutectic Ga-In-Sn, etc.) liquid metals, with low viscosity and excellent electrical conductivity without toxicity, as low-temperature bonding materials. In this paper, the latest research trends of low-temperature bonding technology using gallium and gallium-based alloys are summarized and introduced. These technologies are expected to become important base technologies for practical use in the fields of manufacturing flexible electronic devices and low-temperature bonding in microelectronic packages in the future.

Manufacturing of Product by Semi-Solid Forging (반용융 단조품의 제조)

  • Park, Hyung-Jin;Kang, Chung-Gil;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.45-51
    • /
    • 1999
  • The semi-solid forging is a new forging technology in which the billet is heated to the semi-solid state coexisting liquid and solid phase for making globular microstructure and subsequently formed. As the semi-solid forging is compared with conventional casting such as die casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. Simutaneously, its mechanical properties are improved by globular microstructure and the lower temperature of the slug causes the cycle time of manufacturing to be shortened and the die life to be lengthened. As it is compared with conventional cold and hot forging, it is possible to minimize the equipment of production owing to a lower forming load and reduce the number of process by a followed treatment for complex shaped product. Therefore it is needed to confirm the quality of a semi-solid forged product by defining its characteristics quantitatively under these advantages. This paper investigates the formability of a master cylinder by its forming variables. And the microstructural characteristics and mechanical property of it is also studied.

  • PDF

Numerical Study of Electrohydraulic Forming to Reduce the Bouncing in High Speed Forming Process (고속 성형 공정의 바운싱 현상을 줄이기 위한 액중 방전 성형의 해석적 연구)

  • Woo, M.A.;Noh, H.G.;Song, W.J.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.261-267
    • /
    • 2016
  • High-speed forming process is the forming technology that deforms the blank in a very short time, with the strain rate of the blank above 1000 s−1. Among many high-speed forming processes, electromagnetic forming (EMF) employs the Lorentz force when deforms the blank. Because of the high strain rate, the formability of the blank can be improved. However, when the blank is formed into rather complex shapes, it is bounced from the die and the wrinkles are generated. Therefore, electrohydraulic forming (EHF) is suggested in this study to reduce the bouncing problem of the blank. EHF is a high-speed forming that uses high voltage discharge in liquid. The shockwave resulting from the electric discharge propagates to the blank and it deforms the blank into the die. In this study, two high-speed forming processes, EMF and EHF were compared numerically with trapezoidal middle block die. This comparison showed that EMF cannot deform the blank into the die because of the bouncing, while EHF can overcome the bouncing problem and deform the blank into the die shape successfully.

Development of Electrohydraulic Forming Apparatus and Its Experimental Study (액중 방전 성형의 실험 장치 개발 및 실험적 연구)

  • Woo, Mina;Noh, Hakgon;Song, WooJin;Kang, Beomsoo;Kim, Jeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.236-241
    • /
    • 2017
  • Electrohydraulic forming is a high-speed forming process that deforms a blank using electric discharge in liquid. When high voltage is discharged in the water, a shock wave is propagated from the tip of the electrodes to the blank, causing the blank to be deformed into the die. Electrohydraulic forming has many advantages including improved formability and reduced bouncing effect and springback. The objective of this paper was to conduct a feasibility study to identify the electrohydraulic effect. An electrohydraulic forming apparatus was developed and experiments were carried out. The results of the experiment showed that the developed apparatus had sufficient energy to deform the blank into the die. Using the hole to emit residual air in the die was more effective than using the vacuum pump in terms of saving on experiment time.