• Title/Summary/Keyword: Liquid flow measurement

Search Result 242, Processing Time 0.028 seconds

Critical Evaluation of and Suggestions for the VOCs Measurement Method Established as the Korean Indoor Air Quality Standard Method (실내공기질 공정시험법 중 VOCs 측정방법의 문제점 고찰 및 개선방안에 관한 연구)

  • Ye, Jin;Jung, Dong-Hee;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.586-599
    • /
    • 2014
  • During the last two decades, indoor air quality and volatile organic compounds (VOCs) have been of concern in Korean society due to their nature of potential health impacts. In order to investigate the pollution levels of VOCss in indoor environments, establishment of a solid test method for monitoring the airborne VOCss is essential. In Korea, a method based on adsorbent sampling and GC analysis coupled with thermal desorption was proclaimed as the Korea Standard Method for Indoor Air Quality Test. This study was carried out to examine some inherent problems of the VOCs measurement method. The VOCs method does not describe in detail preparing the standard samples. The standard samples may be prepared by impregnation of either liquid standard solutions or a mixture of standard gases. In this study, we investigated the optimal temperature condition for transferring the liquid standards onto a standard adsorbent tube. As a result, keeping the impregnation temperature at $250^{\circ}C$ will be recommended in regard of the boiling points of multiple target analytes and the thermal stability of the adsorbent. We also demonstrated some problems associated with handling of a syringe used for transferring the standard solutions onto the adsorbent tubes, and a best way to get rid of the syringe problems was suggested. Finally, a number of field works were conducted to evaluate the performance of adsorbent sampling methods. Comparison of different adsorbent tubes, i.e. tube packed with single sorbent (Tenax) and double sorbents (Tenax with Carbotrap), revealed that 30 to 40% differences between the two groups, implying that sampling efficiency is depending on the volatility and the strength of adsorbents. However, duplicate precisions for VOCs sampling with a same type of adsorbent and at same flow rates appeared to be satisfactory to be all within 20%, which is a quality control guideline. Distributed volume precisions were also found to be within a guideline value, 25%, although the precision was in general inferior to the duplicate precision. The Korea indoor VOCs test method should be more refined and improved in many aspects, particularly procedure and instrumentation for preparing the standard samples and specification of quality control assessment.

Measurement and Calculation of Excess Enthalpies for n-Hexane/Alkane series and NaOH/Water/Ethanol System using Isothermal Microcalorimeter (등온 미세열량계를 이용한 n-Hexane-알칸계 이성분 혼합물 및 NaOH/Water/Ethanol계의 과잉 엔탈피 측정 및 계산)

  • Choi, In Kyu;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.660-667
    • /
    • 2017
  • Equilibrium data of the mixture is essential in the design and operation of separation equipment such as distillation or extraction in chemical processes. These equilibrium data can be obtained through experiments or by calculations using the known binary parameters and the thermodynamic models. Generally, to obtain these parameters, phase equilibrium experimental data such as gas-liquid and liquid-liquid are used. In this study, the excess enthalpy of the mixture was measured using the flow type microcalorimeter which is a simpler method than phase equilibria experiments, and the parameters of various theories were obtained by using this data. In order to investigate the relationship between carbon chain length, enthalpy and binary parameters in the alkane system, excess enthalpies for the n-hexane + alkane (n-pentane, n-heptane, n-octane and n-dodecane) were measured at 298.15 K and the banary interaction parameters of Wilson, NRTL, and UNIQUAC were obtained from the experimental data. In addition, we wanted to obtain basic information on the interaction and association phenomena of the system including electrolyte applicable to various fields by using the excess enthalpy experimental data and the existing theory. First, we investigated the excess enthalpy for the NaOH / Water / Ethanol system as a basic experiment and examined the applicability using the electrolyte-NRTL (eNRTL) theory.

Development of Ceramide NP Analysis Method in Cosmetic Formulations Using Liquid Chromatography (액체크로마토그래피를 이용한 화장품 제형 내 세라마이드엔피 분석법 확립)

  • Ye Ji Lee;Young Eun Kim;Jae Yong Seo;Hyun Dae Cho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.291-298
    • /
    • 2023
  • In this study, a quantitative analysis method was developed using high-performance liquid chromatography (HPLC) to analyze the content of ceramide NP in lotion, cream, and cleanser formulations in cosmetics. The analysis was performed using a C18 column, and the mobile phase was set at a ratio of 70 : 30 for acetonitrile and methanol, the flow rate was set to 0.8 mL/min, and the column temperature was set to 20 ℃. The method was verified by analyzing specificity, linearity, limit of detection, limit of quantitation, accuracy, and precision in accordance with the ICH guidelines. As a result of validating the method, the linearity of the calibration curve was excellent (R2 = 0.99984). The accuracy of the lotion, cream, and cleanser formulations was confirmed with a recovery rate ranging from 95.11% to 100.48%. The precision analysis showed a low relative standard deviation (RSD) of less than 0.26%. The limit of detection was 0.902 ㎍/mL, and the limit of quantitation was 2.733 ㎍/mL. Through this quantitative analysis method of ceramide NP applied in cosmetics, it is expected to assist in the quality control of products by enabling measurement even when it is difficult to separate the main peak due to the influence of interfering substances.

Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate (원통 침지형 평막 생물반응기 내 산기량에 따른 3차원 유동현상에 관한 수치모사)

  • Kim, Dae Chun;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • In membrane bio-reactor (MBR), the aeration control is one of the important independent variables to decrease fouling and to save energy with shear stress change on the membrane surface. The paper was carried out for numerical simulation of 3-dimensional fluid flow phenomena of the cylindrical bioreactor with submerged flat membranes equipped in the center and supplied the air from the bottom by using the COMSOL program. The viscosity and temperature of solution were assumed to be constant, and the specific air demand based on permeate volume ($SAD_p$) defined as scouring air per permeate rates was used as a variable. The calculated CFD velocities were compared with those of the velocity meter measurement and video image analysis, respectively. The results were good agreement each other within 11% error. For fluid flow in the reactor the liquid velocity increased rapidly between the air diffuser and membrane module, but the velocity decreased during flowing of the membrane module. Also, the velocity increased as it was near from the reactor wall to the central axis. The calculated shear stress on the membrane surface showed the highest value at the center part of the module bottom side and increased as aeration rate increased. Especially, the wall shear stress increased dramatically as the aeration rate increased from 0.15 to 0.25 L/min.

Effects on CO2 and NOx Emissions at Real Driving Condition in the Passenger Car using Gasoline Fuel with Various Engine Displacements (휘발유 승용자동차의 엔진 배기량이 실도로 주행시 이산화탄소 및 질소산화물 배출에 미치는 영향)

  • Lee, Jongtae;Kim, Hyung Jun;Lim, Yun Sung;Yun, Chang Wan;Keel, Ji Hoon;Hong, You Deug
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.122-127
    • /
    • 2018
  • Recently, registrated passenger cars have increased and were close about seventy million at the end 2017 year in Korea. Among the passenger car using gasoline fuel make up forty six percentage of total registrated vehicles. In this study, investigation on real driving emission characteristics in the passenger car using gasoline fuel with various engine displacements were carried out. The real driving emission characteristics were measured and analyzed by using PEMS (Portable Emission Measurement System). PEMS was composed of gas analyzer, emission flow meter and sample conditioning system et al. Also, test six vehicles were selected to the gasoline passenger car with engine displacement from 1.6L to 3.7L. Two test routes with engine start of cold and hot conditions were applied to analyze the emission characteristics of RDE, respectively. The results show that the $CO_2$ emission have a increasing trend as the engine displacement and vehicle weight. Also, it is guessed that the $CO_2$ emission and vehicle weight were more correlated than the engine displacements. On the other hand, NOx emissions of RDE have not increasing or decreasing tendency according engine displacements or vehicle weight because the activation of three-way catalyst in the gasoline vehicles.

Study on the Atomization Characteristics of a Counter-swirling Two-phase Atomizer with Variations of Swirl angle (역선회 이류체 미립화기의 선회각 변화에 따른 미립화 특성연구)

  • Kim, N.H.;Lee, S.G.;Ha, M.H.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.125-130
    • /
    • 2001
  • Experimental and analytical researches have been conducted on the twin-fluid atomizers for better droplet breakup during the past decades. But, the studies on the disintegration mechanism still present a great challenge to understand the drop behavior and breakup structure. In an effort to describe the aerodynamic behavior of the sprays issuing from the internal mixing counter-swirling nozzle, the spatial distribution of axial (U) radial (V) and tangential (W) components of droplet velocities are investigated across the radial distance at several axial locations of Z=30, 50, 80, 120 and 170mm, respectively. Experiments were conducted for the liquid flow rates which was kept constant at 7.95 g/s and the air injection pressures were varied from 20 kPa to 140 kPa. Counter-swirling internal mixing nozzles manufactured at angles of $15^{\circ},\;30^{\circ},\;45^{\circ}$ and $60^{\circ}$ the central axis with axi-symmetric tangential-drilled holes was considered. The distributions of velocities and turbulence intensities are comparatively analyzed. PDPA is installed to specify spray flows, which have been conducted along the axial downstream distance from the nozzle exit. Ten thousand of sampling data was collected at each point with time limits of 30 second. 3-D automatic traversing system is used to control the exact measurement. It is observed that the sprays with all swirl angle have the maximum SMD for on air injection pressure of 20 kPa and 140 kPa with centerline, respectively. The nozzle with swirl angle of $60^{\circ}$ has vest performance.

  • PDF

Effect of Operating Condition of Airblast Atomizer on Twin spray characteristics and interaction (공기충돌형 연료분사장치의 운용조건이 이중분무특성과 간섭효과에 미치는 영향)

  • Park, S.G.;Han, J.S.;Kim, Y.;Park, J.B.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 1999
  • The effect of operating condition was studied experimently on the characteristics of twin sprays ejected from two airblast atomizers, within the range of the mass air-fuel ratio 1.36∼3.54. Water and nitrogen gas were used as test fluids for the experiments. Spray characteristics of liquid spray were measured with measurement of mass distribution and instantaneous image of the spray cone. Experimental results show that the maximum specify of the distribution were lowered but distributed over the larger area when the ROA ratio increased, Center of mass position did not change with increasing water mass flow, Increase of the nozzle distance has an small effect on mass distribution of interaction area but distributed over the larger area. It was also conformed that the effect of interaction near central point of collision decreased with the increase of the ROA ratio on interaction area from comparison using superposition method

  • PDF

Correlations of Oil Concentration Prediction during In-line Flow of $CO_2/Oil$ Mixtures (유동중인 $CO_2$냉매와 오일 혼합물의 농도 예측을 위한 상관식)

  • Park, Keun-Seo;Kang, Byung-Ha;Park, Kyoung-Kuhn;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.718-725
    • /
    • 2007
  • In the general vapor-compression refrigeration system, refrigeration lubricant circulates in refrigeration system with refrigerant. Knowledge of the amount of circulating lubricant is very important to exactly calculate capacity of the refrigeration system. An experimental study was conducted to estimate the oil concentration of a flowing $CO_2/Oil$ mixtures. POE and PAG oil are considered as test lubricants in this study. Performance tests were conducted under simulated liquid conditions for $CO_2/POE$ oil mixture in oil concentration of 0 to 10 weight-percent and $CO_2/PAG$ oil mixture in oil concentration of 0 to 6 weight-percent in the temperature ranges of $-5^{\circ}C\;to\;15^{\circ}C$. The results obtained indicate specific gravity of $CO_2/Oil$ mixture is increased as oil concentration is increased and as temperature of mixture is decreased. Oil concentration correlation of $CO_2/POE$ oil mixture and $CO_2/PAG$ oil mixture is suggested, based on the measurement of specific gravity and temperature. This correlation enable to predict the oil concentration without extraction of the mixture and can be applied for $CO_2/POE$ mixtures and $CO_2/PAG$ mixtures.

Measurement of Coating Removal Rate of Accelerated Dry Ice Snow Impact (가속 드라이아이스 snow impact에 의한 도막 제거속도의 측정)

  • Na, Young Min;Kim, Hotae;Kim, Sun-Geon
    • Clean Technology
    • /
    • v.10 no.4
    • /
    • pp.177-187
    • /
    • 2004
  • Dry ice snow jet was produced by high-pressure expansion of liquid carbon dioxide and subsequent acceleration by carrier gas flow. Removal mechanism for coating was not so different from that for contaminating particles on the surface. The removal of coating was quantitatively described by Hutchings' equation. The two parameters obtained from the plot, were used to predict the removal rate or the specific coating area removed by a unit mass of carbon dioxide. Their values also enhanced the reliability of the experimental data and enabled the experimental errors corrected. Hutchings' plots obtained with various values of either stand-off distance or nozzle length tends to meet apparently at a single unique point at which the scar-size enlargement by focusing jet plume was balanced with that by spreading it.

  • PDF

Measurement of Size Distributions of Submicron Electrosprays Using a Freezing Method and an Image Processing Technique (냉각법 및 영상 처리기법을 이용한 서브마이크론 정전분무 액적의 크기분포 측정)

  • Gu, Bon-Gi;Kim, Sang-Su;Kim, Yu-Dong;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1400-1407
    • /
    • 2001
  • The size distributions of electrospray droplets from the Taylor cone in cone-jet mode are directly measured by using a freezing method and a transmission electron microscope (TEM) image processing technique. These results are compared with the data obtained by an aerodynamic size spectrometer (TSI Aerosizer DSP). The use of glycerol seeded with NaI and a freezing method make it possible to sample droplets with their original sizes preserved. Since pictures of droplets are taken with TEM with very low vapor pressure of the solution, evaporation is suppressed by freezing. For liquid flow rates below 1 nl/sec, the measured droplet diameters by the TEM image processing technique and the aerosizer are in the range of 0.25 to 0.32 m add 0.3B to 0.40m, respectively. Comparing the TEM data with the aerosizer measurements, it has been revealed that the TEM image processing technique can afford more accurate values of droplet size distributions in the submicron range of 0.1 to 0.4m.