• Title/Summary/Keyword: Liquid discharge

Search Result 352, Processing Time 0.032 seconds

Injector Discharge Characteristics of Liquid Rocket Engine (액체 로켓엔진의 분사기 유출 특성)

  • 조원국;류철성;김영목
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.12-19
    • /
    • 2001
  • The discharge characteristics of the oxidizer injector of liquid rocket engine were investigated. The discharge performance was obtained numerically which agreed quantitatively with the measured data. The discharge coefficient is proportional to the cavitation number for cavitating flow and constant for non-cavitating flow. The Reynolds number, however, affects little the discharge coefficient. The discharge coefficient decreased slightly as the Reynolds number increased because the friction loss decreased relatively at high Reynolds number flow.

  • PDF

Hot-firing Test Results of Subscale Gas Generator for 75 ton-class Liquid Rocket Engine (75톤급 액체로켓엔진 축소형 가스발생기 연소시험 결과)

  • Kim, Mun-Ki;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.726-728
    • /
    • 2010
  • A subscale gas generator was designed and manufactured to investigate the effect of design parameters on discharge coefficients of injectors for a 75 ton-class gas generator and hot-firing tests were successfully performed. The test results showed that discharge coefficients of fuel and liquid oxygen injectors remained nearly constant irrespective of variations of a mixture ratio and a chamber pressure. When the post diameter of the liquid oxygen injector was reduced, the discharge coefficient was increased as the pressure drop of the injector was decreased.

  • PDF

The Frequency Spectrum Characteristics of the Radiated Electromagnetic Waves during Positive DC Discharge in Liquid Nitrogen (액체질소중 정극성 직류방전시 방사전자파의 주파수 스펙트럼 특성)

  • Park, Gwang-Seo;Sin, Ho-Yeong;Choe, Byeong-Ju;Choe, Sang-Tae;Kim, Gi-Chae;Lee, Gwang-Sik;Lee, Dong-In
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.648-655
    • /
    • 1999
  • In this study, a relationship between DC discharge and the radiated electromagnetic waves is investigated by measuring electromagnetic waves using a biconical antenna and a spectrum analyzer. The characteristics of frequency spectrum ofthe radiated electromagnetic waves was measured at the atmospheric pressure in Liquid Nitrogen $(LN_2)$ during partial discharges in nonuniform and uniform electric field depend on positive DC power. From this experiment results, it was confirmed that when partial discharge was produced in Liquid Nitrogen and Air, the signal of partial discharge was detected by this experiment and the analysis method. It is considered thatthese results obtained from this investigation may be used as fundamental data for diagnosis and prediction of insulation on the equipments ultra-high voltage, superconducting and cryogenic applications.

  • PDF

Study on Discharge Coefficient Variations of Bi-Swirl Injectors with Working Conditions (작동 조건에 따른 이중 와류 분사기 유량 계수 변화 연구)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.177-180
    • /
    • 2010
  • It has been studied the effect of mixture ratio and chamber pressure on variations of discharge coefficients. Combustion experiments of bi-liquid swirl coaxial injectors were conducted at fuel-rich conditions with liquid oxygen and kerosene. Using two types of injectors for the experiments, characteristics of the discharge coefficient have been identified from variations in a diameter of the fuel nozzle and a momentum ratio along with the change of a LOx spray angle. It is concluded that discharge coefficients do not vary because of no change of flame structures from the fact that the fuel swirl chamber is completely filled up with fuel flow.

  • PDF

Discharge Coefficient Characteristics in Hot-firing Tests of a Subscale Gas Generator (축소형 가스발생기 연소시험에서의 유량계수 특성)

  • Kim, Mun-Ki;Lim, Byoung-Jik;Kang, Dong-Hyuk;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.73-76
    • /
    • 2011
  • The hot-firing tests of a subscale gas generator were successfully performed to investigate the effect of injector shape variation on discharge coefficients. The test results showed that discharge coefficients of fuel and liquid oxygen injectors remained nearly constant irrespective of variations of a mixture ratio and a chamber pressure. Especially, the discharge coefficient of the liquid oxygen injector was largely increased compared to the previous works.

  • PDF

Hot-firing Tests of Subscale Gas Generator for 75 ton-class Liquid Rocket Engine (75톤급 액체로켓엔진 축소형 가스발생기 연소시험)

  • Kim, Mun-Ki;Seo, Seong-Hyeon;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.173-176
    • /
    • 2010
  • A subscale gas generator was designed and manufactured to understand a reason for increased pressure drop of liquid oxygen injectors observed in a technology demonstration model of a 75 ton-class gas generator. A total of 6 hot-firing tests were successfully performed including experimental conditions of design and off-design points. The hot-firing results showed that discharge coefficients of fuel and liquid oxygen remained constant as the mixture ratio varied at a fixed chamber pressure. At a fixed mixture ratio, it was also found that discharge coefficients of fuel and liquid oxygen was constant as the chamber pressure was increased.

  • PDF

Finite Element Analysis for Dielectric Liquid Discharge under Lightning Impulse Considering Two-Phase Flow (절연유체 내 2상유동을 고려한 뇌임펄스 응답 유한요소해석)

  • Lee, Ho-Young;Lee, Jong-Chul;Chang, Yong-Moo;Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2097-2102
    • /
    • 2011
  • Discharge analysis technique for dielectric liquid was presented by using the Finite Element Analysis (FEA) under a lightning impulse incorporating two-phase flow phenomena which described gas and liquid phases in discharge space. Until now, the response of step voltage has been extensively explored, but that of lightning impulse voltage was rarely viewed in the literature. We, therefore, developed an analyzing technique for dielectric liquid in a tip-sphere electrode stressed by a high electric field. To capture the bubble phase, the Heaviside function was introduced mathematically and the material functions for the ionization, dissociation, recombination, and attachment were defined in liquid and bubble, respectively. By using this numerical setup, the molecular dissociation and ionization mechanisms were tested under low and high electric fields resulted from the lightning impulse voltage of 1.2/50 ${\mu}s$. To verify our numerical results, the velocity of electric field wave was measured and compared to the previous experimental results which can be viewed in many papers. Those results had good agreement with each other.

A Study on the Two-Phase Flow Transition and Atomization Characteristics in Effervescent Injectors (기체주입식 분사기의 이상유동 변화와 분무특성에 관한 연구)

  • Lee, Kangyeong;Jung, Hadong;Kang, Cheolwoong;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.144-154
    • /
    • 2022
  • Gas injection is a technique applied to improve throttling in liquid rocket engines and atomization in effervescent injectors. When a gas is injected into a liquid, it creates a two-phase flow inside the injector. The changes (bubbly flow, slug flow, annular flow, etc.) in the two-phase flow affect the injector's spray characteristics. In this study, cold-flow tests were performed by using three injectors with different orifice diameters and four aerators with different gas injection hole diameters. The experiments were done by changing the thrust ratio (liquid mass flow rate ratio) and gas-liquid mass flow rate ratio. Two-phase flow transition, breakup length, and discharge coefficient according to the injector/aerator design and flow conditions were investigated in detail.

Partial Discharge Measurements of Artificial Defects in HTS Transformer Model using HFCT

  • Lee, S.H.;Shin, W.J.;Park, T.G.;Koo, J.Y.;Lee, B.W.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Partial discharge measurements in cryogenic dielectric materials of HTS transformer are very important because partial discharge was regarded as primary source for ageing and breakdown of cryogenic materials. But, partial discharge measurement techniques and its effects in low temperature high voltage environments were not suggested and there exist only a few reports on this research fields. Therefore, in order to implement reliable HTS transformers, partial discharge diagnosis techniques for cryogenic materials of HTS transformers were investigated using partial discharge (PD) pattern analysis methods. In this works, four different types of artificial defects including turn to turn insulation, free moving particle, void and protrusion, have been fabricated since it was commonly regarded that they might cause the sudden service failures of the power apparatus. For this purpose, these defects are installed into the dielectric materials in liquid nitrogen and experimental investigations have been carried out for the diagnosis of HTS transformer. And various PD patterns caused by the amount of quench of superconductors were analyzed. Throughout this works, the different PD patterns in cryogenic dielectric materials in liquid nitrogen, and PD measuring technique could be the fundamental steps to establish diagnosis technologies of HTS transformer for power applications.

  • PDF

Inactivation of Microorganisms in Sewage Using a Pilot Plasma Reactor (Pilot 플라즈마 반응기를 이용한 하수 중 미생물의 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.289-299
    • /
    • 2013
  • Objectives: For the field application of the dielectric barrier discharge plasma reactor, scale-up of the plasma reactor is needed. This study investigated the possibility of inactivation of microorganisms in sewage using pilot multi-plasma reactor. We also considered the possibility of degradation of total organic carbon (TOC) and nonbiodegradable matter ($UV_{254}$) in sewage. Methods: The pilot plasma reactor consists of plasma reactor with three plasma modules (discharge electrode and quartz dielectric tube), liquid-gas mixer, high voltage transformers, gas supply equipment and a liquid circulation system. In order to determine the operating conditions of the pilot plasma reactor, we performed experiments on the operation parameters such as gas and liquid flow rate and electric discharge voltage. Results: The experimental results showed that optimum operation conditions for the pilot plasma reactor in batch experiments were 1 L/min air flow rate), 4 L/min liquid circulation rate, and 13 kV electric discharge voltage, respectively. The main operation factor of the pilot plasma process was the high voltage. In continuous operation of the air plasma process, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal condition of 13 kV were $10^{2.24}$ CFU/mL, 56.5% and 8.6%, respectively, while in oxygen plasma process at 10 kV, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal conditions were $10^{1.0}$ CFU/mL, 73.3% and 24.4%, respectively. Electric power was increased exponentially with the increase in high voltage ($R^2$ = 0.9964). Electric power = $0.0492{\times}\exp^{(0.6027{\times}lectric\;discharge\;voltage)}$ Conclusions: Inactivation of microorganisms in sewage effluent using the pilot plasma process was done. The performance of oxygen plasma process was superior to air plasma process. The power consumption of oxygen plasma process was less than that of air plasma process. However, it was considered that the final evaluation of air and oxygen plasma must be evaluated by considering low power consumption, high process performance, operating costs and facility expenses of an oxygen generator.