• Title/Summary/Keyword: Liquid bulk temperature

Search Result 103, Processing Time 0.026 seconds

High Temperature Deformation Behavior and Estimation for Formability of Zr55Cu30Al10Ni5 Bulk Metallic Glass (Zr계 비정질 합금의 고온 변형거동과 성형성 예측)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.309-312
    • /
    • 2007
  • Deformation behavior of $Zr_{55}Cu_{30}Al_{10}Ni_5$(at. %) bulk metallic glass(BMG) fabricated by suction casting method has been investigated at elevated temperatures in this study. The BMG was first verified to have an amorphous structure with the analysis of X-ray diffraction(XRD) and differential scanning calorimetry(DSC) data. A series of compression tests has consequently been performed in the region of supercooled liquid temperature to investigate the behavior of high temperature deformation. A transition from Newtonian to non-Newtonian flow appeared to take place depending upon both the strain rate and test temperature. A processing map based on a dynamic materials model has been constructed to estimate a feasible forming condition for this BMG alloy.

Finite Element Analysis for forming of bulk amorphous materials (벌크 아몰퍼스 성형의 유한요소 해석)

  • Yoon, S.H.;Go, H.K.;Kim, Y.I.;Lee, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1804-1809
    • /
    • 2003
  • The purpose of this study is to clarify the bulk/sheet forming characteristics of bulk amorphous alloys in the supercooled liquid state. The temperature dependences of Newtonian viscosities of amorphous materials are obtained based on the previous experimental works. Finite element analyses for compression forming and sheet deep drawing of amorphous materials are performed. Effects of friction coefficients and temperature are examined and formability of amorphous material is explained in detail.

  • PDF

High-impulse, Low-Power Microthruster using Liquid Propellant with High-Viscosity Fluid Plug (저온 비등 팽창유체와 고점성 유체마개를 이용한 고출력 저전력형 마이크로 분사기)

  • Kim, Sang-Wook;Kang, Tae-Goo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.868-874
    • /
    • 2002
  • A high-impulse, low-power, digital microthruster has been developed using low-boiling-temperature liquid propellant with high-viscosity fluid plug. The viscous fiction force of the fluid plug increases the blast pressure and the low-boiling-temperature liquid propellant is intended to reduce input power consumption. The three-layer microthruster has been fabricated by surface micromachining as well as bulk micromachining in the size of 7$\times$13$\times$1.5㎣. A digital output impulse bit of 6.4$\times$10$^{-8}$ Nsec has been obtained from the fabricated microthruster using perfluoro normal hexane (FC72) propellant and oil plug, resulting in about ten times increase of the impulse bit using one hundredth electrical input energy compared to the conventional multiple-shot microthruster.

Deformation behavior in Cu-based bulk amorphous alloys composite during compression (동기지 동계 Bulk Amorphous 복합재의 압축 변형거동)

  • Lee C. H.;Kim J. S.;Park E. S.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • Copper-based bulk amorphous alloy composite was synthesized by using the copper-coated $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ amorphous powder which was obtained by argon gas atomization. The amorphous powder having a super-cooled liquid region of 53 K was coated by crystalline copper by electroless coating. The consolidation was carried out by manufacturing performs and by the subsequent warm extrusion at 743 K. During the compression test at the room temperature, the composite containing a large fraction of crystalline copper displayed a larger plastic strain after yielding. FEM simulation revealed change in fracture modes in the composites depending on the amount of crystalline copper in the composites.

  • PDF

Analysis of Powder Characteristics of Cheese by Using RSM in Spray Dryer with Rotating Wheel Atomizer (Wheel형 분무건조기에 반응표면법에 의한 치즈 분말의 특성 해석)

  • Kang, An-Soo;Yeo, Kyung-Mok;Kim, Yong-Ryeol;Kim, Bok Nam;An, Hyung-Hwan;Lee, Han-Seob
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1147-1155
    • /
    • 1996
  • In the spray drying with rotating wheel atomizer of cheese powder, the relationships among variables were analyzed with Response Surface Methodology in which several independent variables such as total solid content, wheel rotation speed, and outlet temperature influenced dependent variables such as particle diameter, moisture content, bulk density, and viscosity of suspended liquid. Significance and correlation were tested according to central composite design. As a results of analyzing the correlations between independent and dependent variables, particle diameter and moisture content of cheese powder were decreased with increasing wheel rotation speed, and bulk density was decreased with increasing outlet temperature. Viscosity of suspended liquid were increased with increasing wheel rotation speed and total moisture content. In correlation among dependent variables, moisture content was proportional to bulk density, and particle diameter was inversly proportional to moisture content and bulk density.

  • PDF

Room and High Temperature Deformation Behaviors and Estimation on Formability of Zr-based Bulk Metallic Glass Composite (Zr-Nb-Cu-Ni-Al 비정질 복합 재료의 변형거동과 성형성)

  • Jun, H.J.;Lee, K.S.;Kuhn, U.;Eckert, J.;Chang, Y.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.199-202
    • /
    • 2008
  • In this study, we investigated the thermal properties of $Zr_{66.4}Nb_{6.4}Cu_{10.5}Ni_{8.7}Al_{8.0}$ by using a differential scanning calorimeter (DSC), and then analyzed the composition of dendrite phase by using X-ray diffraction (XRD). A series of uniaxial compression tests has been performed under the strain rates between $10^{-5}/s$ and $10^{-2}/s$ at room temperature and near SLR. This BMGC has higher high temperature strength than other Zr-based monolithic BMGs because in-situ formed crystalline phases hinder a feasible viscous flow of amorphous matrix. Warm formability is also estimated by laboratory-scale extrusion test within supercooled liquid region. It was found that BMGC has poor formability compared with nother Zr-based bulk metallic glass composite presumably due to large volume fraction of 'brittle' crystalline phases distributed within amorphous matrix.

  • PDF

High Temperature Compressive Deformation Behavior of the Bulk Metallic Glass Zr-Ti-Cu-Ni-Be Alloy (벌크 비정질 Zr-Ti-Cu-Ni-Be 합금의 고온 압축 변형 특성)

  • 이광석;하태권;안상호;장영원
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.565-572
    • /
    • 2001
  • It is well known that a multicomponent $Zr_{4l.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk metallic glass alloy shows good bulk glass forming ability due to its high resistance to crystallization in the undercooled liquid state. DSC and XRD have been performed to confirm the amorphous structure of the master alloy. To investigate the mechanical properties and deformation behavior of the bulk metallic $Zr_{4l.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy, a series of compression tests has been carried out at the temperatures ranging from $351^{\circ}C$ to $461^{\circ}C$at the various initial strain rates from $2{\times}10^4s^1$ to $2{\times}10^2s^1$. Three types of nominal stress-strain curves have been identified such as linear stress-strain relationship meaning fracture at maximum stress, plastic deformation including stress overshoot and steady-state flow, plastic deformation without stress overshoot depending on the strain rate and test temperature. Also DSC analysis for the compressed specimens was carried out to investigate the change of structure, thermal stability and crystallization behavior for the various test conditions.

  • PDF

Effects of artificial holes on the cooling efficiency of single grain Y1.5Ba2Cu3O7-y bulk superconductors (단결정 Y1.5Ba2Cu3O7-y 벌크 초전도체의 냉각효율에 대한 인공 구멍의 효과)

  • Kim, Kwang-Mo;Park, Soon-Dong;Jun, Byung-Hyuk;Ko, Tae-Kuk;Kim, Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.1-4
    • /
    • 2012
  • Effects of artificial holes on the cooling efficiency of single grain YBCO bulk superconductors were studied. Single grain YBCO bulk superconductors without artificial holes, with six 2.4 mm holes and six holes filled with Bi-Pb-Cd-Sn metal solder were fabricated by a top-seeded melt growth process for powder compacts with/without holes. Simulation for the cooling rate to a liquid nitrogen temperature (77 K) of YBCO samples was carried out using a finite element method (FEM) and the results are compared with the actual cooling rates of samples in liquid nitrogen. The simulated cooling times for the YBCO sample without holes, with six holes and with six holes filled with the metal solder were 80, 47 and 75 sec. respectively, which are similar to the actual cooling times of 84, 52 and 78 sec. estimated for the same samples cooled in liquid nitrogen. The shorter cooling time of the sample with artificial holes are attributed to the increased surface areas associated with the presence of artificial holes. The metal filling into the holes did not give any remarkable effect on the cooling efficiency.

Design, Fabrication and Performance Testing of a High-impulse, Low-Power Microthruster using Liquid Propellant with High Viscous Fluid Plug (저전력소비, 고출력, 연발형 마이크로 분사기의 설계, 제작 및 성능 시험)

  • Kim, Sang-Wook;Kang, Tae-Goo;Cho, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.59-63
    • /
    • 2001
  • A high-impulse, low-power, continuous-shot microthruster has been developed using low boiling temperature liquid-propellant with high viscous fluid-plug. The viscous friction force of the fluid-plug increases the blast pressure and the low boiling temperature liquid-propellant is intended to reduce input power consumption. The three-layer microthruster has been fabricated by surface micromachining as well as bulk micromachining in the size of $7{\times}13{\times}1.5mm^{3}$. A continuous output impulse bit of $6.4{\times}10^{-8}N{\cdot}sec$ has been obtained from the fabricated microthruster using perfluoro normal hexane (FC72) propellant and oil plug, resulting in about ten times increase of the impulse bit using one hundredth electrical input energy compared to the conventional continuous microthruster.

  • PDF

Evaluation of Glass-forming Ability in Ca-based Bulk Metallic Glass Systems (칼슘기 벌크 비정질 합금에서 비정질 형성능 평가)

  • Park, Eun-Soo;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.29 no.4
    • /
    • pp.181-186
    • /
    • 2009
  • The interrelationship between new parameter ${\sigma}$ and maximum diameter $D_{max}$ is elaborated and discussed in comparison with four other glass forming ability (GFA) parameters, i.e. (1) super-cooled liquid region ${\Delta}T_x (=T_x - T_g)$, (2) reduced glass transition temperature $T_{rg} (=T_g/T_l)$, (3) K parameter $K (=[T_x-T_g]/[T_l -T_x])$, and (4) gamma parameter ${\gamma}(=[T_x]/[T_l+T_g])$ in Ca-based bulk metallic glass (BMG) systems. The ${\sigma}$ parameter, defined as ${\Delta}T^*{\times}P^'$, has a far better correlation with $D_{max}$ than the GFA parameters suggested so far, clearly indicating that the liquid phase stability and atomic size mismatch dominantly affect the GFA of Ca-based BMGs. Thus, it can be understood that the GFA of BMGs can be properly described by considering structural aspects for glass formation as well as thermodynamic and kinetic aspects for glass formation.