• Title/Summary/Keyword: Liquid bulk temperature

Search Result 103, Processing Time 0.284 seconds

A Study on the Subcooled Boiling Heat Transfer in a Horizontal Tube (수평관내 냉매의 과냉비등열전달에 관한 연구)

  • 김종헌;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 1994
  • A new reliable method to prediet the axial vapor fraction distribution from the measured probability density of the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled boiling flow is easily calculated from the liquid bulk temperature. When the heat generating rate is reached to the CHF value, the sharp wall temperature increasing by the wall temperature fluctuation is occurred under the CHF condition. This paper presents the simple wall temperature fluctuation model of transition boiling by the repeating process of overheating and quenching, when the coalescent bubble passes slowly near the wall. Experiments for the subcooled R-113 flow are carride-out in the range of(0.9399~4.461)${\times}10^6$kg/$m^2$hr mass velocity and 10~3$0^{\circ}C$ intel subcooling condition.

  • PDF

Strain Rate Dependency of Deformation Behavior in $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ Bulk Metallic Glass ($Zr_{55}Cu_{30}Al_{10}Ni_{5}$ 벌크 유리상 금속 변형거동의 변형률속도 의존성)

  • Shin, Hyung-Seop;Jeong, Young-Jin;Ko, Dong-Kyun;Oh, Sang-Yeob
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1145-1150
    • /
    • 2003
  • Zr-based bulk metallic glasses have a significant mechanical properties such as high strength and elastic strain limit, and a good processing ability due to the deformation behavior such as superplasticity under supercooled liquid region. Recently, many researches on the determination of optimum working condition in various bulk metallic glasses have been carried out. In this study, the deformation behavior and forming conditions of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass were investigated under three different strain rates and at various temperatures between 627K and 727K. The glass transition temperature, crystallization temperature and supercooled liquid region of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass are 680K, 762K and 82K, respectively.

  • PDF

A Study on the Real Quality and Void Fraction of Subcooled Refrigerant Flow (과냉 비등류의 실제건도와 보이드율에 관한 연구)

  • Kim, J.H.;Kim, C.S.;Kim, K.K.;Oh, C.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.36-43
    • /
    • 1993
  • Real quality and axial void fraction distribution of subcooled refrigerant flow is very important to predict the heat transfer rate and pressure drop in the design of refrigerating system. In the subcooled boiling region, the liquid bulk temperature is still below the corresponding saturation temperature. But beyond the net vapor generation point, bubble detachment is occured actively from the vapor layer formed on the wall. A reliable method to predict the vapor fraction from the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled R-113 flow is calculated in the range of 261-1239kg/$m^2$s mass velocity and 10-30K subcooling.

  • PDF

Recovery of Golden yellow and Cibacron LSG dyes from aqueous solution by bulk liquid membrane technique

  • Muthuraman, G;Ali, P. Jahfar
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.243-252
    • /
    • 2012
  • Tri-n-butyl phosphate (TBP) was used as carrier for the transport of Golden yellow and Cibacron LSG dyes through a hexane bulk liquid membrane. The transport efficiency of dyes by TBP was investigated under various experimental conditions such as pH of the feed phase (dyes solution), concentration of the receiving phase (NaOH solution), concentration of TBP in membrane, rate of stirring, effect of transport time, type of solvent, dye concentration in feed phase, effect of temperature.. The maximum transport dyes occurs at ratio of 1:1 TBP-hexane At pH 3.0 0.1 (feed phase) the transport dyes decreased. At high stirring speed (300 rpm) the dyes transport from the feed phase to the strip phase was completed within 60 minutes at $27^{\circ}C$. Under optimum conditions: Feed phase 100 mg/L dyes solution at pH 1.0 0.1, receiving phase 0.1 mol/L NaOH solution, membrane phase 1:1 TBP-hexane , Stirring speed 300 rpm and temperature $27^{\circ}C$, the proposed liquid membrane was applied to recover the textile effluent.

Study for Local Glass Transition of Bulk Metallic Glasses using Atomic Strain (원자변형률을 이용한 비정질 금속의 천이온도에 관한 연구)

  • Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.104-109
    • /
    • 2011
  • Bulk metallic glasses (BMG) have been greatly improved by the advance of synthesis process during last three decades. It was also found that the Glass Forming Ability (GFA) strongly depends on the glass transition temperature. When the temperature approaches to a critical value, the crystals nucleation from the supercooled liquid can be suppressed so that bulk glass formation possible. Egami and others found that the local glass transition temperature depends on the volumetric strain of each atom and suggested the critical transition temperature. In this paper, we explore the strain dependency of local glass transition temperature using the atomic strain defined by the deformation tensor for the Voronoi polyhedra.

An Experimental Study on Temperature and Velocity Fields of the Turbulent Flows Horizontal Cylindrical Tube by Using Thermo-sensitive Liquid Crystal (수평원통 관에서 감온액정을 이용한 난류유동의 온도 및 속도장에 관한 실험적 연구)

  • 장태현;도덕희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.921-929
    • /
    • 2003
  • An experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. To determine some characteristics of the turbulent flow, 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the color of the liquid crystal versus temperature using various approaches (TLC technique: Thermochromic Liquid Crystal), and a neural-network algorithm was applied to the color-to-temperature calibration. This study shoud the temperature and time-mean velocity distribution for Re = 2,436, 2,500 and 2,724 along longitudinal sections and the results appear to be physically reasonable.

Deformation Behavior of Bulk Amorphous Alloys During Hot Forming Process (열간성형공정에서 벌크 아몰퍼스 소재의 변형거동)

  • Lee Yong-Shin
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.696-703
    • /
    • 2004
  • The purpose of this study is to examine the bulk/sheet forming characteristics of bulk amorphous alloys in the super cooled liquid state. Recently it is reported that amorphous alloys exhibit stress overshoot/undershoot and non-Newtonian behaviors even in the super cooled liquid state. The stress-strain curves with the temperature-dependences as well as strain-rate dependence of Newtonian/non-Newtonian viscosities of amorphous alloys are obtained based on the previous experimental works. Then, those curves are directly used in the thermo-mechanical finite element analyses. Upsetting and deep drawing of amorphous alloys are simulated to examine the effects of process parameters such as friction coefficient, forming speed and temperature. It could be concluded that the superior formability of an amorphous alloy can be obtained by taking the proper forming conditions.

Fabrication and Mechanical Properties of Ni-based Amorphous Bulk Alloys (Ni기 비정질 벌크합금의 제조와 기계적 성질)

  • Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.288-292
    • /
    • 2002
  • Ni-base amorphous alloys were manufactured using melt-spinning and Cu-mold die casting methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties were examined. The reduced glass transition temperature and the supercooled liquid region of $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$alloy were 0.621 and 46 K respectively. $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$ alloy was produced in the rod shape 3mm diameter using the Cu-mold die casting. Hardness, compression strength, elongation and elastic modulus of the alloy were 850 DPN, 2.75 GPa, 1.8% and 150 GPa respectively. Moreover, compression strength of 2.75 GPa was the highest value in the amorphous bulk alloy produced up to now.

Investigation on the Self-Pressurization in Cryogenic Liquid Storage System (극저온 유체 저장 시스템의 압력 증가에 대한 연구)

  • Seo, Man-Su;Kim, Young-Kwon;In, Se-Hwan;Jeong, Sang-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.142-147
    • /
    • 2008
  • This paper reports an analysis of self-pressurization in a closed cryogenic liquid storage system and its comparison with experimental data using liquid nitrogen. Partial equilibrium model(PEM), revised thermodynamic analysis of homogeneous model, has been applied for the pressurization in a closed tank. The vapor and liquid bulk temperature and the liquid-vapor interface temperature are separately calculated as their own representative values in this analysis. The analysis results of the partial equilibrium model are compared with the experimental data and other preceding homogeneous temperature models for validation.

  • PDF

Evolution of temperature gradients during rolling of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ bulk metallic glass in the super cooled liquid region (Cu기 비정질 합금의 과냉각 액상구간에서 온간 압연시 Roll 온도의 영향)

  • Park, E.S.;Lee, J.H.;Kim, H.J.;Bae, J.C.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.409-412
    • /
    • 2006
  • Bulk metallic glass (BMG) strips of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ were produced by warm rolling of the amorphous powder canned with copper. Controlling of temperatures of the rolled sample and rolls was essential for the successive rolling process. Because improper controlling of the sample temperature gave rise to the crystallization of BMG loading to the catastrophic fracture of BMG strips, the temperature of rolls should be properly controlled for achieving successful powder rolling of BMG. The variations of the strain state and temperature in the roll gap was simulated by the finite element method(FEM) using various roll temperatures.

  • PDF