• Title/Summary/Keyword: Liquid Transient

Search Result 394, Processing Time 0.022 seconds

Effect of Inlet Velocity Distribution on the Heat Transfer Coefficient in a Rotating Smooth Channel (입구 속도 분포가 매끈한 회전유로 내 열전달계수에 미치는 영향)

  • Choi, Eun-Yeong;Lee, Yong-Jin;Jeon, Chang-Soo;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.76-84
    • /
    • 2011
  • The effect of inlet velocity profile on the heat transfer coefficient in a rotating smooth channel was investigated experimentally. Three simulated inlet flow conditions of fully developed, uniform, and distorted inlet conditions were tested. The Reynolds number based on the channel hydraulic diameter was ranged from 10,000 to 30,000 and the transient liquid crystal technique was used to measure the distribution of the heat transfer coefficient in the rotating channel. Results showed that the overall heat transfer coefficient increased as the Reynolds number increased. Also, the distribution of the heat transfer coefficient was strongly affected by the inlet flow condition. Generally, the fully developed flow simulated condition showed the highest heat transfer coefficient.

The Effect of Base Metal Grain Boundary on Isothermal Solidification Phenomena during TLP Bonding of Ni Base Superalloys (액상확산접합한 Ni기 초내열합금의 등온응고거동에 미치는 모재결정입계의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.325-333
    • /
    • 2001
  • The effect of base metal grain size on isothermal solidification behavior of Ni-base superalloy, CMSX-2 during transient liquid phase (TLP) bonding was investigated employing MBF-80 insert metal. TLP-bonding of single crystal. coarse-grained and fine-grained CMSX-2 was carried out at 1373∼1548k for various holding time in vacuum. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process for single crystal, coarse-grained and fine-grained base metals. The completion time for isothermal solidification decreased in the order ; single crystal, coarse-grained and fine-grained base metals. The difference of isothermal solidification rates produced when bonding the different base metals could be explained quantitatively by the effect of base metal grain boundaries on the apparent average diffusion coefficient of boron in CMSX-2.

  • PDF

Metallurgical Study of Microconstituents in Transient Liquid Phase Bended Joints of Ni Base Superalloy (Ni기 초내열합금의 액상확산접합부 생성상의 금속조직학적 검토)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2001
  • The metallurgical study of microconstituents in transient liquid phase bonded joints of Ni-base single crystal superalloys, CMSX-2 and CMSX-4 was investigated employing MBF-80 insert metal. TLP bonding of specimens was carried out at 1,373~1,523K for 0~19.6ks in vacuum. Three types of microconstituents ; needle-like constituent, dot-like constituent and abnormal shape constituent were formed in the bonded interlayer during TLP bonding operation. All these microconstituents were identified as boride. Microconstituents contain a large percentage of Cr in the early stage of bonding. As increasing the holding time, the amount of Cr was decreased and the amount of W, Co and Re were increased. From the analysis results of electron diffraction pattern by TEM, composition of elements in microconstituents were into MBlongrightarrowM$_{5}$B$_3$longrightarrowM$_2$B type with the increased in holding time. It can be explained by the fact that the relative amount of boron in microconstituents was decreased when the holding time was increased.d.

  • PDF

Measurement of Heat Transfer and Pressure Distributions on a Gas Turbine Vane Endwall (가스터빈 베인 끝벽의 열전달 특성 및 정압분포 측정)

  • Lee, Yong-Jin;Shin, So-Min;Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.33-38
    • /
    • 2006
  • Heat transfer coefficients and static pressure distributions on a gas turbine vane endwall were experimentally investigated in a 5 bladed linear cascade. The Reynolds number based on an axial chord length and the cascade exit velocity was 500,000. Both heat transfer and pressure measurements on the vane endwall were made at the two different turbulence intensity levels of 6.8% and 10.8%. Detailed heat transfer coefficient distributions on the vane endwall region were measured using a hue detection based transient liquid crystals technique. Results show various regions of high and low heat transfer coefficients on the vane endwall surface due to several types of secondary flows and vortices. Heat transfer coefficient and endwall static pressure distributions showed similar trends for both turbulence intensity, however, the averaged heat transfer coefficients for higher turbulence intensity case was higher than the lower turbulence intensity case by 15%.

  • PDF

Transient-Liquid-Phase Bonding of Fe-Base MA956 ODS Alloy (Fe기 MA956 산화물분산강화합금의 천이액상확산접합에 관한 연구)

  • 강지훈
    • Journal of Powder Materials
    • /
    • v.2 no.1
    • /
    • pp.53-62
    • /
    • 1995
  • TLP(Transient-Liquid-Phase) bonding of Fe-base MA956 ODS alloy was performed. As insert metal a commercially available Ni-base alloy(MBF50) and an MA956 alloy with additive elements of 7wt% Si and 1wt% B were used. To confirm the idea that a concurrent use of MA956 powder with Insert metals can enhance the homogenization of constituent elements and thereby reduce the thickness of joint interface, MA956 powder was also inserted In a form of sheet. SEM observation and EDS analysis revealed that Cr-rich phase was formed in the bonded interface in initial stage of isothermal solidification during the bonding process, irrespective of kind of insert metals. Measurement of hardeness in the region of bonded interface and EDS analysis showed that a complete homogenization of composition could not be obtained especially in case of MBF50. Joints using either BSi insert metals only or BSi insert together with MA956 powder interlayer showed, however, a remarkable improvement in a compositional homogenization, even though a rapid grain growth in the bonded interface could not be hindered.

  • PDF

Freezing of Water in Von-Kármán Swirling Flow (Von-Kármán 회전 유동 하에서의 물의 결빙)

  • Yoo, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.413-422
    • /
    • 1996
  • Freezing of water in von-$K{\acute{a}}rm{\acute{a}}n$ swirling flow is considered. The transient behavior of the temperature distribution in both solid and liquid phases and freezing rate are determined. The fluid flow induced by the rotation of solid strongly inhibits the freezing process. The thickness of frozen layer is inversely proportional to the square root of the angular velocity of solid. As the angular velocity or initial liquid temperature becomes larger, the freezing process is more strongly inhibited by the fluid flow. When phase change is present, the transient heat transfer rate is greater than the case with no phase change.

  • PDF

Transient Liquid Phase Bonding of Gamma Prime Precipitation Strengthened Ni Based Superalloy (석출강화형 Ni 기 초내열합금의 천이액상확산접합)

  • Kim, Jeong Kil;Park, Hae Ji;Shim, Deog Nam
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.52-61
    • /
    • 2017
  • Transient liquid phase (TLP) bonding is essential technology to repair micro-cracking on the airfoil of blades and vanes for gas turbines. Understanding of the characteristics of TLP bonding of the superalloys is necessary in the application of the technology for repairing these components. In this study, the focus was on investigating TLP bonding characteristics of ${\gamma}^{\prime}$ precipitation strengthened Ni based superalloy. TLP bonding was carried out with an amorphous filler metal in various bonding conditions, and the microstructural characterization was investigated through optical microscopy (OM) and electron probe micro-analysis (EPMA). The experimantal results explained clearly that bonding temperatures had critical effects on the TLP bonding behaviors, and that isothermal solidication of the joints made at higher temperatures than $1170^{\circ}C$ was controlled by Ti diffusion instead of B.

TRANSIENT SIMULATION OF SOLID PARTICLE DISTRIBUTION WITH VARIOUS DESIGN PARAMETERS OF THE BAFFLE IN A STIRRED TANK (배플 형상에 따른 교반기 내부 고체입자 분포의 비정상상태 해석)

  • Kim, Chi-Gyeom;Lee, Seung-Jae;Won, Chan-Shik;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • In the present study, numerical simulations were performed in a stirred solid/liquid system by using Eulerian multi-phase model. The transient flow field of liquid and distribution of solid particles were predicted in the stirred tank with pitched paddle impeller and baffles. The Frozen rotor method is adopted to consider the rotating motion of the impeller. The effects of number and width of baffles on the mixing time and the quality of solid suspension in the stirred tank are presented numerically. The result shows that the mixing time decreases as the width and number of baffles increase. The present numerical methodology can be applied to optimizing mixing condition of industrial mixer.

An experimental study on the heat transfer augmentation by using the multiple orifice nozzle (다중 오리피스 노즐을 이용한 충돌분류의 열전달 향상에 관한 실험적 연구)

  • 김예용;정기호;김귀순;서태범
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.647-657
    • /
    • 1999
  • An experimental study has been peformed to investigate the heat transfer characteristics of impinging jets with multiple orifice nozzles. Four different shapes of multiple orifice nozzle were tested to improve the heat transfer characteristics of impinging jet. Heat transfer coefficients were obtained by using transient and steady method based on the liquid crystal thermography, and both methods showed very similar results. The effects of multiple orifice nozzles on the heat transfer characteristics of impinging jets were discussed in detail. The results showed that multiple orifice nozzles improved the heat transfer characteristics of impinging jet. Especially, heat transfer coefficients around stagnation region of impinging jets were highly increased.

  • PDF

Transient Response Analysis of Cylindrical Liquid Fuel-Storage Tank subject to Initial Acceleration (원통형 액체 연료탱크의 초기 가속에 따른 과도응답 해석)

  • Lee, S.Y.;Joo, Y.S.;Kim, K.W.;Cho, J.R.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.475-480
    • /
    • 2000
  • The transient dynamic-response analysis of fuel-storage tanks of flying vehicles accelerating in the vertical direction is achieved with finite element method. A fuel-storage tank is a representative example of the fluid-structure interaction problem, in which structure and fluid media interact strongly. For the accurate analysis of this complicated fluid-structure system, we employed ALE(arbitrary Lagrangian-Eulerian) coupling method. Two types of fuel-storage tanks, one with two baffles and the other without baffle, are considered to examine the effect of baffles. The fuel-storage tank with baffles shows more uniform hydrodynamic pressure distribution, resulting effective stress in structural region and faster convergence from transient to steady states. MSC/Dytran, a commercial FEM software for the 3D coupled dynamic analysis, is used for this analysis.

  • PDF