• Title/Summary/Keyword: Liquid Rocket Engine Thrust Chamber

Search Result 100, Processing Time 0.024 seconds

Optimal Design of Fuel-Rich Gas Generator for Liquid Rocket Engine (액체로켓의 농후 가스발생기 최적설계)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.91-96
    • /
    • 2004
  • An optimal design of the gas generator for Liquid Rocket Engine (LRE) was conducted. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton in thrust with RP-1/LOx propellant. The optimal design was done for maximizing specific impulse of thrust chamber with constraints of combustion temperature and for matching the power requirement of turbopump system. Design variables are total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design provide length, diameter, and contraction ratio of gas generator. And the operational condition predicted by design code with resulting configuration was found to maximize the objective function and to meet the design constraints. The results of optimal design will be tested and verified with combustion experiments.

A Study on Flame and Dynamic Characteristics of Injectors in Liquid Rocket Engine (액체로켓엔진 분사기의 화염 및 동적 특성 연구)

  • Song, Ju-Young;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Seol, Woo-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.141-145
    • /
    • 2004
  • The objective of the present study is to conduct model combustion tests for various injectors to identify their combustion stability characteristics. Three different double swirl coaxial injectors with variation of a recess length have been tested for the comparative study of CH flame structure and dynamic characteristics. Gaseous oxygen and mixture of gaseous methane and propane have been employed for simulating actual propellants used for a full-scale thrust chamber. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

  • PDF

A Study on the Performance Evaluation of Dual Swirl Injectors (Dual Swirl 인젝터의 성능 평가에 관한 연구)

  • 김선진;정해승
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.113-123
    • /
    • 2003
  • Both numerical analysis and experiment of cold and hot tests were performed to obtain basic design data for the swirl coaxial type Injector and to predict the combustion performance. Mass distribution, mixing distribution, mixing efficiency, characteristic velocity efficiency were measured by the cold tests and numerical analysis using the commercial thermo-hydraulic program. Test and analysis variables were recess, pressure drop, velocity ratio, mixing spray, mixture ratio. Hot tests were performed for the Uni-element injector to compare the performance with the cold test results, and, hot tests for Multi-element injector were performed to compare the performance with Uni-element injector. Designed thrust of the Uni-element injector liquid rocket was 35kgf at sea level and combustion chamber pressure, 20bar. Kerosene and Lox were used as a propellant.

Experimental Study on Nozzle Ablation in Liquid Rocket Engine (액체로켓의 노즐 삭마에 대한 실험적 연구)

  • Kim, J.W.;Park, H.H.;Kim, S.K.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.38-44
    • /
    • 2000
  • In general liquid rocket nozzles are protected from hot combustion gas by regenerative cooling techniques. But due to the complexity of the cooling system, it causes increase of system cost and frequently source of the system malfunction. Recently, instead of regenerative cooing, ablative material are used to protect combustion chamber wall and nozzle. To determine the nozzle material erosion rate and erosion shape, more than 500 hot fire test were performed by using 100 lb thrust experimental liquid rocket. Test variable were propellant feed sequence, injector, position of igniter and liquid oxygen supply temperature.

  • PDF

Analysis of Pressure Fluctuations in a Thrust Chamber with Chamber Pressure Variation (연소실 압력 변화에 따른 연소기 압력 섭동 분석)

  • Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.8-14
    • /
    • 2010
  • For the development of a liquid rocket engine, hot-firing tests of a regeneratively cooled thrust chamber were performed at chamber pressures of approximately 30 and 60 bars. In the paper, pressure fluctuation data, which were obtained from the dynamic pressure transducers installed in propellant manifolds and combustion chamber, were analyzed. Compared to the data at chamber pressure of 60 bar, the results at chamber pressure of 30 bar showed low-frequency oscillations around 150 Hz in the combustion chamber. The low-frequency waves in the combustion chamber were coupled with those in the manifolds. However, the RMS values of the chamber pressure fluctuations at chamber pressure of 30 bar were only 0.8% of the chamber pressures. Thus, it can be inferred that the thrust chamber operates in the stability boundary even at low chamber pressure.

Effect of Combustion Instability on Heat Transfer in a Subscale Thrust Chamber (연소불안정에 따른 축소형 연소기에서의 열전달 영향)

  • Ahn, Kyubok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3403-3409
    • /
    • 2014
  • Hot-firing tests were carried out using a mixing head with 19 swirl coaxial injectors and a combustion chamber with internal cooling channels. The propellants of liquid oxygen and kerosene(Jet A-1) were burned in a range of chamber pressures (59~82 bar) and mixture ratios (2.0~3.0). The temperature of water used as the cooling fluid was measured at the inlet and outlet of the cooling channels, and the heat flux was calculated. The aim of this study was to examine the effect of combustion instability on heat transfer in a subscale thrust chamber, and detect the temperature variation of cooling water. During several hot-firing tests, combustion instability was encountered which caused a 5~20% increase in heat flux. The peak heat flux took place in the initial stages of combustion instability.

Cold flow Test and Ignition Test of a 75-tonf-Class Thrust Chamber with Ablative Material for Technology Demonstration (75톤급 기술검증용 내열재 연소기의 수류시험과 점화시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Kim, Mun-Ki;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.26-37
    • /
    • 2011
  • A 75-tonf-class LRE(liquid rocket engine) thrust chamber with ablative material for technology demonstration was manufactured on the basis of development technologies of 30-tonf-class LRE. Hydraulic characteristics of the thrust chamber were examined through cold flow test and ignition test of low flow condition. Test result showed that hydraulic function was good. Side ignition method with igniter ring also showed a fine function of ignition in operating ways of static condition. But a close review is required to understand the phenomena of generation and extinction of specific frequencies showed in dynamic characteristics ways. To achieve these, a large combustion test facility which is capable of performing combustion test at design condition of the 75-tonf-class thrust chamber should be constructed as soon as possible.

Study on the High Pressure Combustion Performance Characteristics of the 1st Row Pintle Injector using LOx-Kerosene as Propellant (LOx와 Kerosene을 추진제로 하는 1열 핀틀 분사기의 고압 연소성능 특성에 관한 연구)

  • Kang, Donghyuk;Kim, Jonggyu;Ryu, Chulsung;Ko, Youngsung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.17-25
    • /
    • 2022
  • The pintle injector has many advantages in the key characteristics of a liquid rocket engine, such as combustion stability, combustion efficiency, and wide range of comprehensive thrust control, design and manufacture, and test fired under supercritical conditions. The pintle injector is manufactured with a rectangular, single-row orifice for thrust control and production considerations. In order to verify the combustion performance of the pintle injector and its potential as a commercial injector, the combustion characteristics were analyzed by varying the TMR (Total Momentum Ratio) and BF (Blockage Factor). The result of the hot firing test showed that the heat flux increased as TMR increased, and it confirmed that the characteristic velocity efficiency was more affected by BF than TMR. Suppose a single-row pintle injector with efficiency characteristics insensitive to changes in TMR can achieve high efficiency at low fuel differential pressure conditions. In that case, the variable pintle injector's design flexibility can be increase.

Ignition and Extinction Characteristics of a Low Thrust Combustion Chamber using Green Propellant according to Sequence of the Combustion Test (친환경 추진제를 사용하는 저추력 액체로켓엔진의 연소시험 시퀀스에 따른 점화 및 소염 특성)

  • Kim, Young-Mun;Jeon, Jun-Su;Choi, Yu-Ri;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.130-133
    • /
    • 2009
  • The sequence of the propellant supply is very important for the reliable and safe operation of a LRE combustion test. So combustion performance tests were performed to find an optimum test sequence by changing supply time of propellants and purge gas in the moment of ignition and extinction. The liquid rocket engine consisted of a catalytic ignitor and six swirl-coaxial injectors which used hydrogen peroxide and kerosene. Conclusively, an optimum sequence was found for stable combustion in the moment of ignition and extinction.

  • PDF

Optimal Design and Combustion Analysis of Fuel-rich Gas Generator for Liquid Rocket Engine Based on RP-1 fuel (RP-1연료를 사용한 농후연소 가스발생기의 최적설계 및 연소해석)

  • 권순탁;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 101on1 in thrust with RP-1/LOx combination. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching in turbopump system. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. The configuration of the gas generator and the condition for performance which can maximize the objective function were determined and found to meet the design constraints. Also, the combustion analysis was conducted to evaluate the performance of designed chamber and injector of gas generator. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.

  • PDF