• 제목/요약/키워드: Liquid Micro-layer

검색결과 73건 처리시간 0.031초

Au Catalyst Free and Effect of Ga-doped ZnO Seed Layer on Structural Properties of ZnO Nanowire Arrays

  • Yer, In-Hyung;Roh, Ji-Hyoung;Shin, Ju-Hong;Park, Jae-Ho;Jo, Seul-Ki;Park, On-Jeon;Moon, Byung-Moo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.354-354
    • /
    • 2012
  • In this study, we report the vertically aligned ZnO nanowires by using different type of Ga-doped ZnO (GZO) thin films as seed layers to investigate how the underlying GZO film micro structure affects the distribution of ZnO nanowires. Arrays of highly ordered ZnO nanowires have been synthesized on GZO thin film seed layer prepared on p-Si substrates ($7-13{\Omega}cm$) with utilize of a pulsed laser deposition (PLD). With the vapor-liquid-solid (VLS) growth process, the ZnO nanowire synthesis carries out no metal catalyst and is cost-effective; furthermore, The GZO seed layer facilitates the uniform growth of well-aligned ZnO nanowires. The influence of the growth temperature and various thickness of GZO seed layer have been analyzed. Crystallinity of grown seed layer was studied by X-Ray diffraction (XRD); diameter and morphology of ZnO nanowires on seed layer were investigated by field emission scanning electron microscopy (FE-SEM). Our results suggest that the GZO seed layer with high c-axis orientation, good crystallinity, and less lattice mismatch is key parameters to optimize the growth of well-aligned ZnO nanowire arrays.

  • PDF

CRPT를 이용한 연약지반 협재층 탐지 (Detection of thin-layered soil using CRPT in soft soil)

  • 윤형구;김준한;김래현;최용규;이종섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.117-125
    • /
    • 2008
  • The detection of thin-layered soil is important in soft soils to evaluate the soil behavior. The smaller diameter cone penetrometer have been commonly used to detect the layer with increasing sensitivity. The objective of this study is to detect the thin-layered soil using cone resistance and electrical resistance. The cone resistivity penetration test (CRPT) is developed to evaluate the cone tip resistance and electrical resistance at the tip. The CRPT is a micro-cone which has a $0.78cm^2$ in projected area. The application test is conducted in a laboratory large-scale consolidometer (calibration chamber). The kaolinite, sand and water are mixed to make the specimen at the liquid limit of 46% using a slurry mixer. It takes two months for the consolidation of the specimen. After consolidation, the CRPT test is carried out. Furthermore the standard CPT results are compared with the electrical resistance measured at the tip in the field. This study suggests that the CRPT may be a useful tool for detecting thin-layers in soft soils.

  • PDF

Analysis and reduction of thermal magnetic noise in liquid-He dewar for sensitive low-field nuclear magnetic resonance measurements

  • Hwang, S.M.;Yu, K.K.;Lee, Y.H.;Kang, C.S.;Kim, K.;Lee, S.J.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권2호
    • /
    • pp.20-23
    • /
    • 2013
  • For sensitive measurements of micro-Tesla nuclear magnetic resonance (${\mu}T$-NMR) signal, a low-noise superconducting quantum interference device (SQUID) system is needed. We have fabricated a liquid He dewar for an SQUID having a large diameter for the pickup coil. The initial test of the SQUID system showed much higher low-frequency magnetic noise caused by the thermal magnetic noise of the aluminum plates used for the vapor-cooled thermal shield material. The frequency dependence of the noise spectrum showed that the noise increases with the decrease of frequency. This behavior could be explained from a two-layer model; one generating the thermal noise and the other one shielding the thermal noise by eddy-current shielding. And the eddy-current shielding effect is strongly dependent on the frequency through the skin-depth. To minimize the loop size for the fluctuating thermal noise current, we changed the thermal shield material into insulated thin Cu mesh. The magnetic noise of the SQUID system became flat down to 0.1 Hz with a white noise of 0.3 $fT/{\surd}Hz$, including the other noise contributions such as SQUID electronics and magnetically shielded room, etc, which is acceptable for low-noise ${\mu}T$-NMR experiments.

LPE법으로 성장시킨 $Zn:LiNbO_3/Mg:LiNbO_3$ 단결정 박막의 구조적 특성 (Structural properties of $Zn:LiNbO_3/Mg:LiNbO_3$ single crystal thin films grown by LPE method)

  • 이호준;신동익;이종호;윤대호
    • 한국결정성장학회지
    • /
    • 제15권3호
    • /
    • pp.120-123
    • /
    • 2005
  • [ $Li_2CO_3-V_2O_5$ ], flux를 사용한 liquid phase epitaxy(LPE) 법을 사용하여 $LiNbO_3$ (001) 기판위에 5 mol% ZnO가 첨가된 $LiNbO_3$, 박막과 2 mol% MgO가 첨가된 $LiNbO_3$, 박막을 성장시켰다. $Zn:LiNbO_3$, 막과 $Mg:LiNbO_3$, 막과의 결정성과 격자 부정합은 x-ray rocking curve(XRC)로 분석되었다. 그리고 다층 박막의 단면에서의 ZnO와 MgO의 분포가 electron probe micro analyzer(EPMA)를 사용하여 관측되었다.

Michelson 간섭계를 응용한 미세 상변화 현상 계측 (Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry)

  • 김동식;박희권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.348-353
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the micro scale regime is essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing applications, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse (${\lambda}=248nm,\;FWHM=24\;ns$) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of $0.1{\mu}m\;and\;1\;m/s$, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

  • PDF

인산형 연료전지(PAFC)의 전극 성능 향상을 위한 미세다공층(MPL)의 적용 (Application of Micro Porous Layer (MPL) for Enhance of Electrode Performance in Phosphoric Acid Fuel Cells (PAFCs))

  • 하지훈;강성민;오유관;백동현
    • 전기화학회지
    • /
    • 제27권1호
    • /
    • pp.32-39
    • /
    • 2024
  • 인산형 연료전지(PAFC)의 전기화학적 성능에 영향을 미치는 핵심 부품은 전극 촉매, 전해질 매트릭스 및 기체확산층(GDL) 등이 있다. 또한 전극의 성능 향상을 위해 GDL 위에 미세다공층(MPL)을 적용하는 방법도 있다. MPL은 주로 고분자 전해질 연료전지(PEMFC)에서 전극 내부의 수분 관리와 접촉 저항 저감을 위한 중간 완화층 역할을 한다. 본 연구에서는 MPL이 PAFC 전극의 성능에 미치는 영향을 확인하기 위해 MPL이 없는 GDL과 MPL을 적용한 GDL로 전극을 제작하여 단위전지의 내부 저항과 분극 곡선을 서로 비교하였다. 본 실험 결과에서 MPL을 적용하였을 때 전극의 출력 밀도가 170.2 mW/cm2에서 192.1 mW/cm2으로 향상되었다. MPL은 PEMFC에서와 같이 PAFC 전극에서도 매트릭스와 전극에서 액체 전해질과 물 관리에 효과적으로 작용하고 전극 내부의 물질 전달이 향상되어 전극 성능이 향상된 것으로 판단된다. 또한, MPL의 적용으로 PAFC 전극의 내부 저항이 감소하였고 장기 운전시에도 안정적인 성능을 지속적으로 유지하는 결과로부터 PAFC 전극에도 MPL을 적용하면 전극 성능을 향상시킬 수 있음을 확인할 수 있었다.

Development of Microfluidic Radioimmunoassay Platform for High-throughput Analysis with Reduced Radioactive Waste

  • Jin-Hee Kim;So-Young Lee;Seung-Kon Lee
    • 대한방사성의약품학회지
    • /
    • 제8권2호
    • /
    • pp.95-101
    • /
    • 2022
  • Microfluidic radioimmunoassay (RIA) platform called µ-RIA spends less reagent and shorter reaction time for the analysis compared to the conventional tube-based radioimmunoassay. This study reported the design of µ-RIA chips optimized for the gamma counter which could measure the small samples of radioactive materials automatically. Compared with the previous study, the µ-RIA chips developed in this study were designed to be compatible with conventional RIA test tubes. And, the automatic gamma counter could detect radioactivity from the 125I labeled anti-PSA attached to the chips. Effects of the multi-layer microchannels and two-phase flow in the µ-RIA chips were investigated in this study. The measured radioactivity from the 125I labeled anti-PSA was linearly proportional to the number of stacked chips, representing that the radioactivity in µ-RIA platform could be amplified by designing the chips with multi-layers. In addition, we designed µ-RIA chip to generate liquid-gas plug flow inside the microfluidic channel. The plug flow can promote binding of the biomolecules onto the microfluidic channel surface with recirculation in the liquid phase. The ratio of liquid slug and air slug length was 1 : 1 when the 125I labeled anti-PSA and the air were injected at 1 and 35 µL/min, respectively, exhibiting 1.6 times higher biomolecule attachment compared to the microfluidic chip without the air injection. This experimental result indicated that the biomolecular reaction was improved by generating liquid-gas slugs inside the microfluidic channel. In this study, we presented a novel µ-RIA chips that is compatible with the conventional gamma counter with automated sampler. Therefore, high-throughput radioimmunoassay can be carried out by the automatic measurement of radioactivity with reduced radiowaste generation. We expect the µ-RIA platform can successfully replace conventional tube-based radioimmunoassay in the future.

인쇄전자 기술을 이용한 유기 태양전지 기술 개발 (Development of the Organic Solar Cell Technology using Printed Electronics)

  • 김정수;유종수;윤성만;조정대;김동수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active compo-nents in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT(Thin Film Transistor), which are printed withfunctional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manu-facturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and active layer which consist of the P3HT:PCBM. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

  • PDF

MOCVD RuOx 박막의 미세구조 특성평가와 열처리 가스환경 영향 (Microstructural Characterization of MOCVD RuOx Thin Films and Effects of Annealing Gas Ambient)

  • 김경원;김남수;최일상;김호정;박주철
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권9호
    • /
    • pp.423-429
    • /
    • 2002
  • RuOx thin films were fabricated by the method of liquid delivery MOCVD using Ru(C$_{8}$ $H_{13}$ $O_2$)$_3$ as the precursor and their thermal effects and conductivity were investigated. Ru films deposited at 25$0^{\circ}C$ were annealed at $650^{\circ}C$ for 1min with Ar, $N_2$ or N $H_3$ ambient. The changes of the micro-structure, the surface morphology and the electrical resistivity of the Ru films after annealing were studied. Ar gas was more effective than $N_2$ and N $H_3$ gases as an ambient gas for the post annealing of the Ru films, because of smaller resistivity and denser grains. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that the Ru $O_2$ phase and the silicidation are not observed regardless of the ambient gases. The minimum resistivity of the Ru film is found to have the value of 26.35 $\mu$Ω-cm in Ar ambient. Voids were formed at Ru/TiN interface of the Ru layer after annea1ing in $N_2$ ambient. The $N_2$ gas generated due to the oxidation of the TiN layer accumulated at the Ru/TiN interface, forming bubbles; consequently, the stacked film may peel off the Ru/TiN interface.e.

Liquid crystal aligning capabilities for vertical aligned NLC on the $CeO_x$ thin film layer with thermal evaporation

  • Han, Jin-Woo;Kim, Mi-Jung;Kim, Jong-Yeon;Han, Jeong-Min;Kim, Young-Hwan;Kim, Jong-Hwan;Kim, Byoung-Yong;Seo, Dae-Shik
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.371-371
    • /
    • 2007
  • In this study, liquid crystal (LC) aligning capabilities for vertical alignment on the $CeO_x$ thin film by thermal evaporation method were investigated. Also, the control of pretilt angles and thermal stabilities of the NLC treated on $CeO_x$ thin film were investgated. The uniform LC alignment on the $CeO_x$ thin film surfaces and good thermal stabilities with thermal evaporation can be achieved. It is considerated that the LC alignment on the $CeO_x$ thin film by thermal evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $CeO_x$ thin film surface created by evaporation. In addition, it can be achieved the good electro-optical (EO) properties of the VA-LCD on $CeO_x$ thin film layer with oblique thermal evaporation.

  • PDF