• Title/Summary/Keyword: Liquid Layer

Search Result 1,316, Processing Time 0.03 seconds

Direct printing of organic single crystal nanowire arrays by using Liquid-bridge-mediated nanotransfer molding

  • Oh, Hyun-S.;Baek, Jang-Mi;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.473-473
    • /
    • 2011
  • In recent years, organic thin film transistors OTFTs based on conductive-conjugated molecules have received significant attention. We report a fabrication of organic single crystal nanowires that made on Si substrates by liquid bridge-mediated nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the organic single crystal nanowire and the Si substrate. Pentacene is the most promising organic semiconductors. However pentacene has insolubility in organic solvents so pentacene OTFTs can be achieved with vacuum evaporation system. However 6, 13-bis (triisopropylsilylethynyl) (TIPS) pentacene has high solubility in organic solvent that reported by Anthony et al. Furthermore, the substituted rings in TIPS-pentacene interrupt the herringbone packing, which leads to cofacial ${\pi}-{\pi}$ stacking. The patterned TIPS-Pentacene single crystal nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

Patterning of liquid crystal alignment layers using selective dewetting process in a thermoplastic polymer film

  • Kim, Hak-Rin;Shin, Min-Soo;Lee, You-Jin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1719-1722
    • /
    • 2006
  • We proposed a soft-lithographic method for aligning a liquid crystal (LC) in patterned azimuthal orientations. It is demonstrated that a thermoplastic polystyrene layer is patterned from a thermally stable polyimide layer via pressure-assisted capillary force lithography, which provides multidirectional LC alignment condition simply followed by a unidirectional rubbing process.

  • PDF

Electro-optical characteristics of liquid crystal alignment layer modified by ion beam irradiation (액정배향막 표면 개질에 따른 전기광학적 특성연구)

  • Oh, Byeong-Yun;Seo, Dae-Shik
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.513-514
    • /
    • 2008
  • The potential of non-rubbing technology for applying to display devices was demonstrated by irradiating a high density argon ion beam (IB) on a polyimide (PI) as a liquid crystal alignment layer. The superior electro-optical characteristics were obtained, compared to rubbed PI, Although the low pretilt angle was created on the IB irradiated PI.

  • PDF

Optical Implementation of Single-Layer Adaptive Neural Network for Multicategory Classification. (다영상 분류를 위한 단층 적응 신경회로망의 광학적 구현)

  • 이상훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.23-28
    • /
    • 1991
  • A single-layer neural network with 4$\times$4 input neurons and 4 output neurons is optically implemented. Holographic lenslet arrays are used for the e optical interconnection topology, a liquid crystal light valve(LCLV) is used for controlling optical interconection weights. Using a Perceptron learning rule, it classifics input patterns into 4 different categories. It is shown that the performance of the adaptive neural network depends on the learning rate, the correlation of input patterns, and the nonlinear characteristic properties of the liquid crystal light valve.

  • PDF

Influences of Target-to-Substrate Distance and Deposition Temperature on a-SiOx/Indium Doped Tin Oxide Substrate as a Liquid Crystal Alignment Layer (RF 마그네트론 스퍼터링에서 증착거리와 증착온도가 무기 액정 배향막의 물리적 성질에 미치는 영향에 대한 연구)

  • Park, Jeung-Hun;Son, Phil-Kook;Kim, Ki-Pom;Pak, Hyuk-Kyu
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.521-528
    • /
    • 2008
  • We present the structural, optical, and electrical properties of amorphous silicon suboxide (a-$SiO_x$) films grown on indium tin oxide glass substrates with a radio frequency magnetron technique from a polycrystalline silicon oxide target using ambient Ar. For different substrate-target distances (d = 8 cm and 10 cm), the deposition temperature effects were systematically studied. For d = 8cm, oxygen content in a-$SiO_x$ decreased with dissociation of oxygen onto the silicon oxide matrix; temperature increased due to enlargement of kinetic energy. For d = 10 cm, however, the oxygen content had a minimum between $150^{\circ}\;and\;200^{\circ}$. Using simple optical measurements, we can predict a preferred orientation of liquid crystal molecules on a-$SiO_x$ thin film. At higher oxygen content (x > 1.6), liquid crystal molecules on an inorganic liquid crystal alignment layer of a-$SiO_x$ showed homogeneous alignment; however, in the lower case (x < 1.6), liquid crystals showed homeotropic alignment.

Preparation of PVDF/PEI double-layer composite hollow fiber membranes for enhancing tensile strength of PVDF membranes

  • Yuan, Jun-Gui;Shi, Bao-Li;Ji, Ling-Yun
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • Polyvinylidene fluoride (PVDF) hollow fiber membrane is widely used for water treatment. However, the weak mechanical strength of PVDF limits its application. To enhance its tensile strength, a double-layer composite hollow fiber membrane, with PVDF and polyetherimide as the external and inner layers, respectively, was successfully prepared through phase inversion technique. The effects of additive content, air gap distance, N,N-dimethyl-acetamide content in the inner core liquid, and the temperature of external coagulation bath on the membrane structure, permeation flux, rejection, tensile strength, and porosity were determined. Experimental results showed that the optimum preparation conditions for the double-layer composite hollow fiber membrane were as follows: PEG-400 and PEG-600, 5 wt%; air gap distance, 10 cm; inner core liquid and the external coagulation bath should be water; and temperature of the external coagulation bath, 40 C. A single layer PVDF hollow fiber membrane (without PEI layer) was also prepared under optimum conditions. The double-layer composite membrane remarkably improved the tensile strength compared with the single-layer PVDF hollow fiber membrane. The permeation flux, rejection, and porosity were also slightly enhanced. High-tensile strength hollow fiber PVDF ultrafiltration membrane can be fabricated using the proposed technique.

Modeling of burning surface growth and propagation in AP-based composite propellant combustion (AP추진제의 연소면 형성 및 전파 모델링 연구)

  • Jung, Tae-Yong;Kim, Ki-Hong;Yoo, Ji-Chang;Do, Young-Dae;Kim, Hyung-Won;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.191-195
    • /
    • 2009
  • In the solid rocket propellant combustion, dynamic phase change from solid to liquid to vapor occurs across the melt layer. During the burning surface, micro scale bubbles form as liquid and gas phases are mixed in the intermediate zone between the propellant and the flame. The experimentally measured thickness of this layer called the foam layer is approximately 1 micron at 1 atmosphere. In this paper, we present a new melting layer model derived from the classical phase change theory. The model results show that the surface of burning grows and propagate uniformly at a velocity of $r=ap^n$.

  • PDF

Effect of the Electrode Edge on the Viewing Angle Property of a Patterned Vertical Alignment Liquid Crystal Cell

  • Choi, Jung-Min;Ji, Seung-Hoon;Lee, Gi-Dong
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.1-5
    • /
    • 2008
  • This paper investigates the effect of the electrode edge of a patterned vertical alignment (PVA) liquid crystal (LC) device on the viewing angle characteristics. In general, a transmissive LCD applies an LC layer with half-wave retardation for a bright state and with zero retardation for a dark state. The retardation of the LC layer would be distorted in each point, however, when a voltage is applied because of the non-uniform voltage distribution in the electrode edge effect. In this paper, the feasibility of the full effect of the electrode edge on the viewing angle property is considered, and the optical viewing angles of the VA LCD with a uniform half-wave LC layer and the PVA LCD with a practical non-uniform LC layer are compared.

Effect of the Surface Dielectric Layer on the Electro-Optical Performances of Liquid Crystal Devices

  • Park, Jae-Hong;Jung, Min-Sik;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.543-546
    • /
    • 2003
  • We studied the dielectric layer effect on the electro-optical (EO) properties of liquid crystal (LC) devices together with numerical simulations. Recently, it has been reported that the surface dielectric layer affects significantly the EO performances of LC microlens arrays and wide-viewing LC displays. it is found that the operation voltage of the LC device decreases with increasing the dielectric constant or with decreasing the thickness of the dielectric polymer layer. The experimental data agree well with theoretical results predicted in a simple dielectric model within the continuum formalism.

  • PDF

Symmetric-viewing liquid crystal display with alternating alignment layers in an inverse-twisted-nematic configuration

  • Na, Jun-Hee;Li, Hongmei;Park, Seung-Chul;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.191-194
    • /
    • 2011
  • A symmetric-viewing inverse-twisted-nematic (ITN) liquid crystal display (LCD) with alternating alignment layers was developed using a stamping-assisted rubbing (SAR) technique. A patterned layer of a fluorinated acrylate polymer was transferred onto the first rubbed vertical-alignment layer prepared on a substrate by stamping. The fluorinated acrylate polymer provided a protective layer covering the first rubbed alignment layer during the second rubbing process, which promoted the vertical alignment of the LC molecules. The LC cell in the ITN geometry with two orthogonally rubbed alignment layers showed symmetric-viewing characteristics with fourfold symmetry. The SAR technique was shown to be a mask-free alignment method of producing multidomains for symmetric-viewing LCDs.