• 제목/요약/키워드: Liquid Hydrogen Vessel

검색결과 22건 처리시간 0.019초

Diffusion Range and Pool Formation in the Leakage of Liquid Hydrogen Storage Tank Using CFD Tools

  • Kim, Soohyeon;Lee, Minkyung;Kim, Junghwan;Lee, Jaehun
    • 공업화학
    • /
    • 제33권6호
    • /
    • pp.653-660
    • /
    • 2022
  • In liquid hydrogen storage tanks, tank damage or leakage in the surrounding pipes possess a major risk. Since these tanks store huge amounts of the fluid among all the liquid hydrogen process facilities, there is a high risk of leakage-related accidents. Therefore, in this study, we conducted a risk assessment of liquid hydrogen leakage for a grid-type liquid hydrogen storage tank (lattice-type pressure vessel (LPV): 18 m3) that overcame the low space efficiency of the existing pressure vessel shape. Through a commercially developed three-dimensional computational fluid dynamics program, the geometry of the site, where the liquid hydrogen storage tank will be installed, was obtained and simulations of the leakage scenarios for each situation were performed. From the computational flow analysis results, the pool formation behavior in the event of liquid hydrogen leakage was identified, and the resulting damage range was predicted.

극저온 액체수소 저장탱크 지지시스템의 열응력 해석 (Thermal Stress Analysis of the Support System in Cryogenic Liquid Hydrogen Storage Tank)

  • 박동훈;윤상국;이정환;조원일;백영순
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.239-245
    • /
    • 2005
  • The reduction of heat transfer rate to the stored liquid hydrogen from outside condition is extremely important to keep the liquid hydrogen longer. In this paper the highly efficient support system for the liquid hydrogen storage vessel was newly developed and analysed. The support system was composed of a spherical ball in the center of supporter to reduce the heat transfer area, with its above and below supporting blocks which are the SUS and PTFE blocks inserted in the SUS tube. The heat transfer rate and temperature distribution of the support system were evaluated by FLUENT, and the thermal stress and strain were estimated by ANSYS software. The results showed that the heat transfer rate from outer vessel to inner one was extremely decreased compared with the common method which is simply SUS tubes inserted between inner and outer tanks. The thermal stress and strain were obtained well below the limited values. As a result, it was the most efficient support system of storage vessel for liquid hydrogen and most cryogenic fluids.

  • PDF

액체 수소 BOG 안전 압력 유지 및 제어를 위한 극저온 용기의 수치 해석 모델 개발 (Development of Numerical Analysis Model on Cryogenic Vessel for Safety Pressure Maintenance and Control of Liquid Hydrogen BOG)

  • 서영민;노현우;구태형;하동우;고락길
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.280-289
    • /
    • 2024
  • In this study, a cryogenic vessel was constructed to maintain and control the safe pressure of liquid hydrogen boil-off gas (BOG), and the numerical analysis was conducted on the development of computational fluid dynamics model inside the high-pressure vessel. An evaluation system was constructed using cryogenic inner and outer containers, pre-cooler, upper flange, and internal high-pressure container. We attempted to analyze the performance of the safety valve by injecting relatively high temperature hydrogen gas to generate BOG gas and quickly control the pressure of the high-pressure vessel up to 10 bar. As a results, the liquid volume fraction decreased with a rapid evaporation, and the pressure distribution increased monotonically inside a high pressure vessel. Additionally, it was found that the time to reach 10 bar was greatly affected by the filling rate of liquid hydrogen.

Method applied to evaluate heat leakage of cryogenic vessel for liquid hydrogen

  • Li, Zhengqing;Yang, Shengsheng;Wang, Xiaojun;Yuan, Yafei
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권1호
    • /
    • pp.7-11
    • /
    • 2021
  • Cryogenic vessels are special equipment that requires periodic evaluation of their thermal insulation performance. At the current standard, the test is considered as the loss product or heat leakage of cryogenic vessel, which takes over 72 h to evaluate; consequently, a large amount of working medium is discharged to the environment in the process. However, hydrogen is flammable and explosive, and the discharged gas may be dangerous. If liquid hydrogen is replaced with liquid nitrogen before testing, the operation then becomes complicated, and the loss product or heat leakage cannot respond to the thermal insulation performance of cryogenic vessels for liquid hydrogen. Therefore, a novel method is proposed to evaluate the heat leakage of cryogenic vessels for liquid hydrogen in self-pressurization. In contrast to the current testing methods, the method proposed in this study does not require discharge or exchange of working medium in all test processes. The proposed method is based on one-dimensional heat transfer analysis of cryogenic vessels, which is verified by experiment. When this method is used to predict the heat leakage, the comparison with the experimental data of the standard method shows that the maximum error of heat leakage is less than 5.0%.

5 L급 액체수소 저장용기의 성능특성 연구 (Performance of a 5 L Liquid Hydrogen Storage Vessel)

  • 강상우;나다니엘 가르소;임창무;백종훈;김서영;오인환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권3호
    • /
    • pp.234-240
    • /
    • 2015
  • In the face of the world's growing energy storage needs, liquid hydrogen offers a high energy density solution for the storage and transport of energy throughout society. A 5 L liquid hydrogen storage tank has been designed, fabricated and tested to investigate boil-off rate of liquid hydrogen. As the insulation plays a key role on the cryogenic vessels, various insulation methods have been employed. To reduce heat conduction loss, the epoxy resin-based insulation supports G-10 were used. To minimize radiation heat loss, vapor cooled radiation shield, multi-layer insulation, and high vacuum were adopted. Mass flow meter was used to measure boil-off rate of the 5 L cryogenic vessel. A series of performance tests were done for liquid nitrogen and liquid hydrogen to compare with design parameters, resulting in the boil-off rate of 1.7%/day for liquid nitrogen and 16.8%/day for liquid hydrogen at maximum.

다층단열재와 증기냉각쉴드를 사용한 액체수소 저장용기의 열해석 (Thermal Analysis of a Liquid Hydrogen Vessel with Multi-Layer-Insulation and Vapor-Cooled Shield)

  • 정일권;강병하
    • 한국수소및신에너지학회논문집
    • /
    • 제16권3호
    • /
    • pp.284-289
    • /
    • 2005
  • Thermal analysis of cryogenic-capable vessels with insulations have been carried out to store liquid hydrogen($LH_2$). The combined insulations of MLI(Multi-Layer Insulation) and VCS(Vapor-Cooled Shield) under high vacuum are considered in the analysis for various volumes of vessels. Vapor-Cooled Shields(VCS) are installed at cylinder wall as well as disc side of the $LH_2$ vessels. The results indicate that optimal distribution of boiloff vapor from $LH_2$ vessel into two sides of VCS exists based on the evaporation loss. As the volume of $LH_2$ vessel is increased, mass flow rate of boiloff is increased while the evaporation loss per unit volume is decreased.

액체수소 사고피해 완화기술에 대한 연구 (A Study on Mitigating Accidents for Liquid Hydrogen)

  • 조영도;김진준
    • 한국가스학회지
    • /
    • 제16권6호
    • /
    • pp.29-33
    • /
    • 2012
  • 이 연구에서는 최근의 액체수소안전관련 연구현황을 간략히 살펴보고자 한다. 액체수소 저장용기가 파손되어 액체수소가 누출될 수 있다. 누출된 액체수소는 풀을 형성하고 증발하여 수소증기 운을 형성한 뒤 증기운 폭발이 일어날 수 있다. 액체수소를 저장하고 있는 용기가 외부로부터 유입되는 열에 의하여 증발하는 가스를 처리하지 못할 경우에는 BLEVE가 발생할 수 있다. 압축된 수소가스가 있는 시설에서는 수소누출에 의한 제트화제가 발생하고 지연점화에 의하여 개방공간에서 플래시 화재 및 폭발이 발생할 수 있다. 이러한 여러 가지 사건에 대하여 최근의 기술개발과 향후연구개발 방향에 대하여 간략히 살펴보았다.

액체수소 저장탱크용 고효율 지지 시스템 개발 및 해석 (Development and Analysis of the Highly Efficient Support System in a Liquid Hydrogen Vessel)

  • 윤상국;박동훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.363-369
    • /
    • 2007
  • Probably the most significant heat transfer in the cryogenic liquid hydrogen storage tank from the atmosphere may occur through its support system. In this paper the efficient support system for the cryogenic storage vessel was newly developed and analysed. The support system was composed of a spherical ball as a supporter to reduce the contact area. which is located between two supporting SUS tubes inserted SUS and PTFE blocks. Numerical analyses for temperature distribution, and the thermal stress and strain of the support system were performed by the commercial codes FLUENT and ANSYS. The heat transfer rate of the supporter was evaluated by the thermal boundary potential method which can consider the variation of thermal conductivity with temperature. The results showed that the heat transfer rate through the developed supporter compared with the common SUS tube supporter was significantly reduced. The thermal stress and strain were obtained well below the limited values. It was found that the developed supporter can be one of the most efficient support systems for cryogenic liquid storage vessel.

유한요소법을 이용한 수소충전용 압력용기의 응력 거동특성에 관한 수치적 연구 (A Numerical Analysis on the Stress Behavior Characteristics of a Pressure Vessel for Hydrogen Filling by FEM)

  • 조승현;변성광;김윤태;최하영
    • 한국가스학회지
    • /
    • 제26권3호
    • /
    • pp.38-44
    • /
    • 2022
  • 전세계적으로 저탄소 친환경에너지로 다변화 정책이 진행되고 있으며, 그 정책 중 하나가 수소경제 활성화이다. 수소경제 활성화 정책으로 수소 공급을 위한 수소충전소의 보급이 가속화됨에 따라 사고발생의 위험도 커지고 있다. 수소의 폭발사고는 대부분 대형사고로 이어지기 때문에 수소에너지를 사용함에 있어 안전성을 확보하는 것은 매우 중요하다. 수소에너지를 활용하기 위해서는 액화수소의 생산, 저장, 운송 등에 사용될 수소저장 용기의 안전성 확보는 반드시 필요하다. 본 논문에서는 수소충전용 압력용기의 구조안전성을 평가하기 위해 가스 압력에 대한 거동특성을 유한요소해석으로 분석하였다. 압력용기의 재료는 SA-372 Grade J / Class 70을 사용하였고, 해석모델은 압력용기가 축대칭 형상이므로 1/4 형상만 고려하여 6면체 메쉬를 적용하였다. 수소가스 압력용기를 사용 최고 압력에서 유한요소해석을 하였으며, 해석 결과인 용기의 von Mises Stress와 변형량, 변형률 에너지 밀도를 관찰하였다.