DOI QR코드

DOI QR Code

Development of Numerical Analysis Model on Cryogenic Vessel for Safety Pressure Maintenance and Control of Liquid Hydrogen BOG

액체 수소 BOG 안전 압력 유지 및 제어를 위한 극저온 용기의 수치 해석 모델 개발

  • YOUNG MIN SEO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • HYUN WOO NOH (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • TAE HYUNG KOO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • DONG WOO HA (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • ROCK KIL KO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute)
  • 서영민 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 노현우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 구태형 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 하동우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 고락길 (한국전기연구원 전기모빌리티연구단 수소전기연구팀)
  • Received : 2024.04.25
  • Accepted : 2024.05.22
  • Published : 2024.06.30

Abstract

In this study, a cryogenic vessel was constructed to maintain and control the safe pressure of liquid hydrogen boil-off gas (BOG), and the numerical analysis was conducted on the development of computational fluid dynamics model inside the high-pressure vessel. An evaluation system was constructed using cryogenic inner and outer containers, pre-cooler, upper flange, and internal high-pressure container. We attempted to analyze the performance of the safety valve by injecting relatively high temperature hydrogen gas to generate BOG gas and quickly control the pressure of the high-pressure vessel up to 10 bar. As a results, the liquid volume fraction decreased with a rapid evaporation, and the pressure distribution increased monotonically inside a high pressure vessel. Additionally, it was found that the time to reach 10 bar was greatly affected by the filling rate of liquid hydrogen.

Keywords

Acknowledgement

이 연구는 2024년도 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회의 지원을 받아 수행된 한국전기연구원 기본 사업임(No. 24A01070). 이 연구는 2024년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임 (24A02089, 액체수소 운송을 위한 3,000 kg 용량 탱크 트레일러 개발 및 실증).

References

  1. H. Wang, B. Wang, J. Sun, Q. Pan, G. Luo, X. Tao, Y. He, J. Pfotenhauer, T. Jin, and Z. Gan, "Experimental and computational fluid dynamic investigation on thermal behaviors of liquid hydrogen during the no-vented storage process: a literature review", International Journal of Hydrogen Energy, Vol. 57, 2024, pp. 822-843, doi: https://doi.org/10.1016/j.ijhydene.2024.01.062.
  2. Y. Jiang, Y. Yu, Z. Wang, S. Zhang, and J. Cao, "CFD simulation of heat transfer and phase change characteristics of the cryogenic liquid hydrogen tank under microgravity conditions", International Journal of Hydrogen Energy, Vol. 48, No. 19, 2023, pp. 7026-7037, doi: https://doi.org/10.1016/j. ijhydene.2022.04.006.
  3. T. Kangwanpongpan, D. Makarov, D. Cirrone, and V. Molkov, "LES model of flash-boiling and pressure recovery phenomena during release from large-scale pressurised liquid hydrogen storage tank", International Journal of Hydrogen Energy, Vol. 50, Pt. D, 2024, pp. 390-405, doi: https://doi.org/10.1016/j.ijhydene.2023.07.126.
  4. D. W. Ha, H. W. Noh, Y. M. Seo, T. H. Koo, and R. K. Ko, "Study on validity of pre-cooling system for hydrogen gas using cryocooler part I: experimental investigation and theoretical analysis", Journal of Hydrogen and New Energy, Vol. 34, No. 4, 2023, pp. 350-357, doi: https://doi.org/10.7316/JHNE.2023.34.4.350.
  5. Y. M. Seo, H. W. Noh, D. W. Ha, T. H. Koo, and R. K. Ko, "Study on validity of pre-cooling system for hydrogen gas using cryocooler part II: CFD simulation", Journal of Hydrogen and New Energy, Vol. 34, No. 5, 2023, pp. 439-446, doi: https://doi.org/10.7316/JHNE.2023.34.5.439.
  6. D. W. Ha, H. W. Noh, Y. M. Seo, T. H. Koo, and R. K. Ko, "Development of LabVIEW-based data storage and monitoring program for a condensed hydrogen liquefaction system", Journal of Hydrogen and New Energy, Vol. 34, No. 5, 2023, pp. 456-464, doi: https://doi.org/10.7316/JHNE.2023.34.5.456.
  7. J. Liu, S. Zheng, Z. Zhang, J. Zheng, and Y. Zhao, "Numerical study on the fast filling of on-bus gaseous hydrogen storage cylinder", International Journal of Hydrogen Energy, Vol. 45, No. 15, 2020, pp. 9241-9251, doi: https://doi.org/10.1016/j.ijhydene.2020.01.033.
  8. D. Melideo, D. Baraldi, B. Acosta-Iborra, R. O. Cebolla, and P. Moretto, "CFD simulations of filling and emptying of hydrogen tanks", International Journal of Hydrogen Energy, Vol. 42, No. 11, 2017, pp. 7304-7313, doi: https://doi.org/10.1016/j.ijhydene.2016.05.262.
  9. G. Wei and J. Zhang, "Numerical study of the filling process of a liquid hydrogen storage tank under different sloshing conditions", Processes, Vol. 8, No. 9, 2020, pp. 1020, doi:https://doi.org/10.3390/pr8091020.
  10. Y. Zhu, Y. Bu, W. Gao, F. Xie, W. Guo, and Y. Li, "Numerical study on thermodynamic coupling characteristics of fluid sloshing in a liquid hydrogen tank for heavy-duty trucks", Energies, Vol. 16, No. 4, 2023, pp. 1851, doi: https://doi.org/10.3390/en16041851.
  11. H. Lv, L. Chen, Z. Zhang, S. Chen, and Y. Hou, "Numerical study on thermodynamic characteristics of large-scale liquid hydrogen tank with baffles under sloshing conditions", International Journal of Hydrogen Energy, Vol. 57, 2024, pp. 562-574, doi: https://doi.org/10.1016/j.ijhydene.2023.12.182.
  12. Y. M. Seo, H. W. Noh, D. W. Ha, T. H. Koo, and R. K. Ko, "Numerical study on the effects of gravity direction and hydrogen filling rate on bog in the liquefied hydrogen storage tank", Journal of Hydrogen and New Energy, Vol. 34, No. 4, 2023, pp. 342-349, doi: https://doi.org/10.7316/JHNE.2023.34.4.342.
  13. D. Kang, S. Yun, B. Kim, J. Kim, G. Kim, H. Lee, and S. Choi, "Numerical investigation of the initial charging process of - the liquid hydrogen tank for vehicles", Energies, Vol. 16, No. 1, 2023, pp. 38, doi: https://doi.org/10.3390/en16010038.
  14. S. M. Chung, H. J. Ahn, and J. C. Park, "Numerical approach to analyze fluid flow in a type C tank for liquefied hydrogen carrier (part 2: thermal flow)", Journal of Energy Storage, Vol. 76, 2024, pp. 109599, doi: https://doi.org/10.1016/j.est.2023.109599.
  15. S. Wu and Y. Ju, "Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation", Energy, Vol. 223, 2021, pp. 120001 doi: https://doi.org/10.1016/j.energy.2021.120001.
  16. G. M. Jeon, J. C. Park, J. W. Kim, Y. B. Lee, D. S. Kim, D. E. Kang, S. B. Lee, S. W. Lee, and M. C. Ryu, "Experimental and numerical investigation of change in boil-off gas and thermodynamic characteristics according to filling ratio in a C-type cryogenic liquid fuel tank", Energy, Vol. 255, 2022, pp. 124530, doi: https://doi.org/10.1016/j.energy.2022.124530.
  17. H. S. Seo, Y. Lee, D. Kim, and C. Park, "Insulation performance and BOR of pressurized large-capacity liquid hydrogen storage tank", Journal of Hydrogen and New Energy, Vol. 34, No. 6, 2023, pp. 650-656, doi: https://doi.org/10.7316/JHNE.2023.34.6.650.
  18. K. Kim, D. Shin, Y. Kim, and S. W. Karng, "Adiabatic performance of layered insulating materials for bulk LH2 storage tanks", Journal of Hydrogen and New Energy, Vol. 27, No. 6, 2016, pp. 642-650, doi: https://doi.org/10.7316/KHNES.2016.27.6.642.
  19. L. Wang, S. Ye, Y. Ma, J. Wang, and Y. Li, "CFD investigation on helium pressurization behaviors in liquid hydrogen tank", International Journal of Hydrogen Energy, Vol. 42, No. 52, 2017, pp. 30792-30803, doi: https://doi.org/10.1016/j.ijhydene.2017.10.145.
  20. C. Wan, S. Zhu, C. Shi, S. Bao, X. Zhi, L. Qiu, and K. Wang, "Numerical simulation on pressure evolution process of liquid hydrogen storage tank with active cryogenic cooling", International Journal of Refrigeration, Vol. 150, 2023, pp. 47-58, doi: https://doi.org/10.1016/j.ijrefrig.2023.01.012.
  21. S. J. Oh, J. Y. Kwon, K. S. Jeon, and J. H. Yoon, "A numerical analysis study on the characteristics of evaporation in liquid hydrogen tank with vacuum layer according to changes in heat flux and vacuum pressure", International Journal of Hydrogen Energy, Vol. 50, Pt. D, 2024, pp. 542-557, doi:https://doi.org/10.1016/j.ijhydene.2023.07.271.
  22. H. Wang, B. Wang, T. Xu, X. Shen, Y. He, W. Zhou, J. Pfotenhauer, T. Jin, and Z. Gan, "Thermal models for self-pressurization prediction of liquid hydrogen tanks: formulation, validation, assessment, and prospects", Fuel, Vol. 365, 2024, pp. 131247, doi: https://doi.org/10.1016/j.fuel.2024.131247.