• Title/Summary/Keyword: Liquid Fuel

Search Result 1,448, Processing Time 0.027 seconds

A Comparative Study on A/F Control Characteristics of Liquid and Gaseous Fueled Engines (액체 및 기체연료 엔진의 공연비 제어특성에 관한 비교 연구)

  • 심한섭;신규철;송창섭;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.106-114
    • /
    • 2002
  • In this study, the air-fuel ratio(A/F) control characteristics of a liquid and a gaseous fueled engine are investigated. Engine models far both the liquid and the gaseous fueled engine are developed to compare the characteristics of fuel delivery into the cylinder, and the performances of the models are evaluated using the simulation and experiment. The simulation and experimental results show that the gaseous fueled engine has better control performance than that of the liquid fueled engine in terms of the air-fuel ratio control. This study could be used to develop air-fuel ratio control schemes for both the liquid and the gaseous fueled engine.

Various Injection Conditions and Fuel Control of an LPG Liquid Injection Engine (다양한 분사조건과 LPG 액상분사엔진의 연료량 제어)

  • Sim Hansub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.28-35
    • /
    • 2005
  • Fuel injection rate of an injector is affected by various injection conditions such as injection duration, fuel temperature, injection pressure, and voltage in LPG liquid injection systems for either a port-fuel-injection(PFI) or a direct injection(DI) in a cylinder. Even fuel injection conditions are changed, the air-fuel ratio should be accurately controlled to educe exhaust emissions. In this study, correction factor for the fuel injection rate of an injector is derived from the density ratio and the pressure difference ratio. A voltage correction factor is researched from injection test results on an LPG liquid injection engine. A compensation method of the fuel injection rate is proposed for a fuel injection control system. The experimental results for the LPG liquid injection system in a SI-engine show that this system works well on experimental range of engine speed and load conditions. And the fuel injection rate is accurately controlled by the proposed compensation method.

Experimental Study on Combustion Characteristics of Porous Ceramic Liquid Fuel Combustor (다공 세라믹 액체 연료 연소기의 연소 특성에 관한 실험적 연구)

  • Chung, K.H.;Lim, I.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.85-93
    • /
    • 1999
  • Experimental study on a porous ceramic liquid fuel combustor is performed. Compact burner with low pollutant emission and high combustion efficiency is realized through the use of porous ceramic materials of high porosities. The use of porous ceramic materials in burner material results in rapid vaporization of liquid fuel and enhancement in mixing process, and thus nearly premixed combustion of liquid fuel is achieved instead of diffusion and partially premixed combustion method, which is often used and apt to produce high pollutant emissions such as CO, NOx and soot. With this enhanced vaporization and premixing method of liquid fuel vapor and air, it is found that enhanced combustion process with intense radiation output and better emission characteristics in NOx, CO and soot emission, compared to other conventional liquid fuel burning method, are possible.

  • PDF

Modeling of Liquid Fuel Behavior to Control Air/Fuel Ratio in the Intake Port of SI Engines (가솔린 기관 공연비 제어를 위한 흡기포트 내의 연료액막 모델링)

  • Cho, Hoon;Min, Kyoung-Doug;Hwang, Seung-Hwan;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.512-518
    • /
    • 2000
  • A wall fuel-film flow model is developed to predict the effect of a wall-fuel-film on air-fuel ratio in an SI engine in transient conditions. Fuel redistribution in the intake port resulting from charge backflow and a simple liquid fuel behavior in the cylinder are included in this model. Liquid fuel film flow is calculated of every crank angle degree using the instantaneous air flow rate. The model is validated by comparing the calculated results and corresponding engine experiment results of a commercial 4 cylinder DOHC engine. The predicted results match well with the experimental results. To maintain the constant air-fuel ratio during transient operation. the fuel injection rate control can be obtained from the simulation result.

EXPERIMENTAL INVESTIGATION AND COMPARISON OF SPRAY AND COMBUSTION CHARACTERISTICS OF GTL AND DIESEL FUELS

  • Kim, K.S.;Beschieru, V.;Jeong, D.S.;Lee, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • GTL (Gas To Liquid) has the potential to be used in diesel engines as a clean alternative fuel due to advantages in emission reduction, particularly soot reduction. Since the physical properties of GTL fuel differ from those of diesel fuel to some extent, studying how this difference in characteristics of GTL and diesel fuels affects spray and combustion in diesel engines is important. In this study, visual investigation of sprays and flames from GTL and diesel fuels in a vessel simulating diesel combustion was implemented. The effects of various parameters and conditions, such as injection pressure, chamber temperature and pilot injection on liquid-phase fuel length and auto-ignition delay were investigated. It was determined that GTL has a somewhat shorter liquid-phase fuel length, which explains why there is less contact between the fuel liquid-phase and flame for GTL fuel compared to diesel fuel.

Combustion Characteristics of Cylindrical Premixed Combustor using Liquid Fuel by Self Evaporation (자열증발된 액체연료를 적용한 원통형 예혼합 연소기의 연소특성)

  • Lee, Pil Hyong;Song, Ki Jong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.7-15
    • /
    • 2016
  • The fuel in conventional liquid fuel combustor is atomized by spray method for high efficiency and low emissions. To improve the overall fuel efficiency and lower pollutant emissions in liquid fuel combustion systems, the effective spatial and temporal separation of droplet evaporation from normal spray process is needed. In this paper, the recuperation of high temperature burnt gas for fuel evaporation was proposed to develop a cylindrical premixed combustor. The recuperation process using U shaped tube is effective to evaporate the liquid fuel. The results show that the flame mode is changed into red radiation flame, blue flame and lift off flame with decreasing equivalence ratio as gas fuel combustion mode. In particular, the blue flame is found to be very stable at heating load 9.2 kW and equivalence ratio 0.731. NOx was measured blow 105 ppm ($O_2$ zero base) from equivalence ratio 0.705 to 0.835. CO which is a very important emission index in liquid fuel combustor was observed below 5 ppm ($O_2$ zero base) under the same equivalence region.

Sloshing Minimization Technique in Liquid Fuel Tank By the Use of Baffle (배플을 적용한 액체연료탱크 내의 슬로싱 억제 기법 연구)

  • 박기진;윤성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.917-920
    • /
    • 2003
  • The sloshing phenomenon sometimes happens to occur in a liquid fuel tank due to the unexpected and/or inevitable vibrating conditions and may result in severe effects on the structural stability. This study deals with the development of experimental techniques for the evaluation of sloshing behaviors in the liquid fuel tank and for the identification of natural frequencies and mode shapes by varying with various vibrating conditions. Measurements of the pressure and load acting on the side surface of vibrated liquid fuel tank are carried in order to identify the effects of sloshing phenomenon by using various types of baffles. The results show that the baffles can be used to minimize the sloshing phenomenon in liquid fuel tank effectively

  • PDF

Measurement of Liquid Fuel Film on the Cylinder Liner in an SI Engine Using an LIF Technique (레이저 유도 형광법을 이용한 가솔린 엔진의 실린더 벽면에 존재하는 연료액막 가시화)

  • Cho, Hoon;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.25-30
    • /
    • 2001
  • The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz liner in an SI engine test rig. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized. The calibration technique was developed to quantify the fluorescence signal with the thickness gage and the calibration device. The fluorescence intensity increases linearly with increase in the fuel film thickness on the quartz liner. Using this technique, the distribution of the fuel film thickness on the cylinder liner was measured quantitatively for different valve lifts and injected fuel mass in the test rig.

  • PDF

An electric conductive-probe technique for measuring the liquid fuel layer in the intake manifold

  • Kajitani, S.;Sawa, N.;Rhee, K.T.;Hayashi, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1184-1189
    • /
    • 1990
  • In order to investigate liquid fuel filming over the intake manifold wall, an electrode-type probe has been developed by lines of authors and this probe was employed in a single cylinder two and four-stroke cycle engine and in a four cylinder four-stroke engine operated by neat methanol fuel. The performance of the probe was dependent upon several parameters including the liquid fuel layer thickness, temperature, additive in the fuel, and electric power source (i.e., AC and voltage level) and was independent of other variables such as direction of liquid flow with respect to the probe arrangement. Several new findings from this study may be in order. The flow velocity of the fuel layer in the intake manifold of engine was about (if the air velocity in the steady state operation, the layer thickness of liquid fuel varied in both the circumferential and longitydinal directions. In the transient operation of the engine, the temporal variation of fuel thickness was determined, which clearly suggests that there was difference between fuel/air ratio in the intake manifold and that in the cylinder. The variation was greatly affected by the engine speed, fuel/air ratio and throttle opening. And the variation was also very significant from cylinder to cylinder and it was particularly strong different engine speeds and throttle opening.

  • PDF

Investigation of the Liquid Fuel Film Behavior on the Cylinder Liner in an SI Engine (가시화를 이용한 가솔린 엔진의 실린더 벽면에서의 연료액막 거동 분석)

  • Cho, Hoon;Hwang, Seung-Hwan;Lee, Jong-Hwa;Min, Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1370-1376
    • /
    • 2003
  • The investigation of liquid fuel film on the cylinder liner is an essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to investigate the liquid fuel film on the quartz liner in the optical engine. For this, the optical engine with hydraulic system was designed based on the commercial SI engine. The visualization was based on the laser-induced fluorescence with total reflection technique. Using a quartz liner and a special lens, only the liquid fuel film on the liner was visualized. With using this technique, the distribution of the fuel film on the cylinder liner was measured for different engine conditions and injection timing in the optical engine.