• Title/Summary/Keyword: Liquid Film Flow Rate

Search Result 93, Processing Time 0.024 seconds

Study on Film Cooling Characteristic of a Liquid Rocket Engine using Hydrogen Peroxide/Kerosene (과산화수소/케로신 액체로켓엔진의 막냉각 특성에 관한 연구)

  • Choi, Yu-Ri;Jeon, Jun-Su;Chae, Byoung-Chan;Min, Ji-Hong;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.601-604
    • /
    • 2010
  • An experimental study was carried out to investigate the effect of film cooling in a liquid rocket engine using Hydrogen peroxide/Kerosene as propellants. The heat fluxes were calculated by the measured wall temperatures on the axial direction of thrust chamber for mass flow rate of coolant and different type of film cooling rings. The flow rate of coolant was 0~20 percent of the total propellant.

  • PDF

Experimental Study of Film Cooling in Liquid Rocket Engine(I) (액체로켓엔진의 막냉각에 관한 실험적 연구(I))

  • Choi, Young-Hwan;Jeong, Hae-Seung;Kim, Yoo;Kim, Sun-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.71-75
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of film cooling in the lab-scale dump-cooled liquid rocket engine using LOX and kerosene as propellants. The nozzle of the rocket engine was film cooled with water as coolant. A special film cooling adapter was fabricated to introduce the film-coolant into the thrust chamber. The flow rates of film coolant was approximately 15~19 percent of the total propellant. The nozzle heat flux was determined from the measured temperature rise and flow rate of the coolant(water). Large reductions in the nozzle heat flux was resulted when film cooling adapter located directly upstream of the nozzle.

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.158-166
    • /
    • 2005
  • The present study investigated experimentally and numerically the enhancement of absorption performance due to the waviness of falling film in the vertical absorber tube. The momentum, energy and mass diffusion equations were utilized to find out temperature and concentration profiles at both the interfaces of liquid solution and refrigerant vapor and the wall. Flow visualization was performed to find out the wetting characteristics of the falling film. The maximum heat transfer coefficient was obtained for the wavy flow using spring as an insert device through both numerical and experimental studies. Based on the numerical and experimental results, the maximum absorption rate was found for the wavy-flow using spring as the insert device. The differences between experimental and analytical results ranged from $5.0\;to\;25\%\;when\;Re_j>100$.

Mist Cooling of High-Temperature Cylinder Surface (고온 실린더의 미스트 냉각)

  • Kim, Mu-Hwan;Lee, Su-Gwan;Park, Ji-Man;Lee, Pil-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.448-457
    • /
    • 2002
  • Heat treatment such as quenching of a high-temperature cylinder is being used on steel to produce high strength levels. Especially, the mist cooling with the high and uniform surface heat flux rate s expected to contribute for better products. The experimental mist cooling curve is produced for better understanding, and two distinct heat transfer regions are recognized from the cooling curve produced. It is shown that the liquid film evaporation dominated region follows the film boiling-dominated region as decreasing the temperature of test cylinder by mist flow. Based on the intuitive view from some previous investigations, a simplified model with some assumptions is introduced to explain the mist cooling curve, and it is shown that the estimation agrees well with our experimental data. In the meanwhile, it is known that the wetting temperature, at which surface heat flux rate is a maximum, increases with mass flow rate ratio of water to air ($\varkappa$ < 10). However, based on our experimental data, it is explained that there exists a critical mass flow rate ratio, at which the wetting temperature is maximum, in the range of 3 < $\varkappa$ < 130. Also, it is described that despite of the same value of $\varkappa$, the wetting temperature may increase with mist velocity.

Spray Characteristics of Two-Phase Flow Jets into a Subsonic Crossflow (아음속 횡단류로 분사되는 이상유동 제트의 분무특성)

  • Lee, Keunseok;Lee, Wongu;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2019
  • An experimental study on the spray characteristics of aerated-liquid jets discharged from effervescent injectors to a subsonic crossflow was conducted to investigate effects of a gas to liquid mass ratio (GLR) and a ratio of the orifice length to the diameter (L/d). The present effervescent injectors consist of a plain orifice injector and an aerator. To analyze breakup length and spray trajectory, instantaneous spray images were taken by a high speed camera. As the GLR increased, the spray penetration became higher under the same liquid mass flow rate and the breakup length became shorter due to the bubble expansion or the annular liquid film breakup. To predict the spray trajectory of two-phase flow jets into the crossflow, the homogeneous and the separated flow models were compared.

The Experimental Study on Mist Cooling Heat Transfer (초음파진동을 이용한 미세분무냉각 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.202-207
    • /
    • 2010
  • Mist cooling is widely employed as a cooling technique of high temperature surfaces, and it has heat transfer characteristics similar to boiling heat transfer which has the convection, nucleate and film boiling regions. In the present study, mist cooling heat transfer was experimentally investigated for the mist flow impacting on the heated surfaces of mico-fins. The mist flow was generated by supersonic vibration. Experiments were conducted under the test conditions of droplet flow rate, $Q=6.02{\times}10^{-9}{\sim}3.47{\times}10^{-8}\;m^3/s$ and liquid temperature, $T_f=30{\sim}35^{\circ}C$. From the experimental results, it is found that an increase in the droplet flow rate improves mist cooling heat transfer in the both case of smooth surface and surfaces of micro-fins. Micro-fins surfaces enhance the mist cooling heat transfer. Besides, the experimental results show that an increase in the droplet flow rate decrease the heat transfer efficiency of mist cooling.

Numerical study of heat and mass transfer around an evaporative condenser tube by multi-zone method (다중 영역법을 이용한 증발식 응축관 주위의 열 및 물질전달 해석)

  • ;;Yun, In-Chul;Yoo, Je-In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3317-3328
    • /
    • 1995
  • The objective of the present study is to predict the characteristics of heat and mass transfer around an evaporative condenser. Numerical calculations have been performed using multi-zone method to investigate heat transfer rate and evaporation rate with the variation of inlet condition(velocity, relative humidity and temperature) of the moist air, the flow rate of the cooling water and the shape of the condenser tube. From the results it is found that the profile of heat flux is the same as that of evaporation rate since heat transfer along the gas-liquid interface is dominated by the transport of latent heat in association with the vaporization(evaporation) of the liquid film. The evaporation rate and heat transfer rate is increased as mass flow rate increases or relative humidity and temperature decrease respectively. But the flow rate of the cooling water hardly affect the evaporation rate and heat flux along the gas-liquid interface. The elliptic tube which the ratio of semi-minor axis to semi-major axis is 0.8 is more effective than the circular tube because the pressure drop is decreased. But the evaporation rate and heat flux shown independency on the tube shape.

Film cooling Effects on Wall Heat Flux of a Subscale Calorimetric Combustion Chamber (막냉각량에 따른 축소형 칼로리미터의 열유속 특성에 관한 연구)

  • Kim, Jong-Gyu;Lim, Byoung-Jik;Seo, Seong-Hyeon;Han, Yeoung-Min;Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.93-99
    • /
    • 2006
  • The effects of the changes of a film cooling mass flow rate and operating conditions on wall heat flux characteristics of a subscale calorimetric combustion chamber were investigated by experiment and numerical analysis. At the nominal operating condition, with the film cooling mass flow rate being 10.5 percent of a main fuel mass flow rate, maximum heat flux at the nozzle throat was measured to be 30 percent lower than that without the film cooling. For the relatively higher mixture ratio and chamber pressure condition, maximum heat flux at the nozzle throat was increased by 31 percent compared to that of the nominal condition test without film cooling.

Quantifying the Variation of Mass Flow Rate generated by Pressure Fluctuation (압력섭동에 의한 유량변동 측정 정량화)

  • Khil, Tae-Ock;Kim, Dong-Jun;Cho, Seong-Ho;Ahn, Kyu-Bok;Han, Yeoung-Min;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.152-156
    • /
    • 2007
  • It is very important to understand about mass flow rate variations of propellants generated by pressure fluctuation in the combustion chamber. Therefore, we have studied quantifying the variation of mass flow rate generated by pressure fluctuation. The flow velocity in orifice is acquired through theoretical approach after measuring the pressure in orifice and the flow area in orifice is measured by film thickness measuring device. Our results agreed with it in the very small error range comparing our results with velocity and mass flow rate in steady state. Thus, our result based on theoretical approach will help about measuring mass flow rate in non-steady state.

  • PDF

Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.869-876
    • /
    • 2018
  • The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of $6cm^3/s$ and a developed pressure of 1.5 MPa at a temperature of $200^{\circ}C$ was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a $Sm_2Co_{17}$ permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields.