• 제목/요약/키워드: Liquid Crystal Polymers

검색결과 73건 처리시간 0.04초

Molecular orientational surface structures of polymers for liquid crystal alignment

  • Ohe, Masahito
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.611-614
    • /
    • 2006
  • Sum-frequency vibrational spectroscopy (SFVS) has been used to study the molecular orientations at the polymer surfaces for liquid crystal alignment. Various molecular orientations appear at the surface depending on various types of surface treatments and polymers.

  • PDF

아이소소바이드기를 갖는 콜레스테릭 액정고분자의 합성 및 성질 (Synthesis and Properties of Cholesteric Liquid Crystalline Polymers with Isosorbide Group)

  • 구수진;윤두수;방문수
    • 공업화학
    • /
    • 제28권2호
    • /
    • pp.230-236
    • /
    • 2017
  • 본 연구에서는 콜레스테릭 액정상 유도를 위하여 아이소소바이드기를 가지고 있으며, 액정상 전이온도의 조절을 위하여 메틸렌기를 포함하고 있는 액정고분자들을 합성하였고, 합성된 액정고분자 내의 아이소소바이드기의 함량과 메틸렌기의 위치가 액정고분자의 물성에 미치는 영향이 조사되었다. 합성된 모든 고분자들 중, 주사슬에 메틸렌 유연격자를 가진 고분자(MnHI-x)가 곁사슬에 메틸렌 유연격자를 가진 고분자(SnBI-x)들보다 더 높은 용융전이온도와 열안정성을 나타내었다. 합성된 모든 고분자들은 양방성 액정상을 나타냈으며, 콜레스테릭 액정상 유도체로써 아이소소바이드 함량이 10몰%인 고분자는 네마틱상을, 20몰% 이상의 고분자들은 콜레스테릭 액정상 또는 카이랄 스멕틱상을 형성하였다. 이로써, 아이소소바이드기가 콜레스테릭 액정상 유도체로써의 역할을 하였음을 알 수 있다.

Thermotropic Liquid Crystal Polymer and PBT Blend

  • Lim, Sung-Tack;Kim, Seong-Hun
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.14-19
    • /
    • 1998
  • Increasing demand for high modulus high strength polymeric materials have drawn considerable interest in industry. Thermotropic liquid crystal polymers (TLCP), differing from lyotropic liquid crystal polymers, have excellent melt processability and mechanical property resulting from the high degree of molecular orientation under a shear flow field in the molten state with relatively low viscosity$\^$1,2/.(omitted)

  • PDF

방향족 액정동족체 및 Epoxy형 측쇄 액정고분자의 합성 및 성질 II. 선형 및 가교형 측쇄 액정고분자 (Synthesis and Properties of Liquid Crystal Compounds and Epoxy Resin Based Side Chain Liquid Crystal Polymers II. Linear and Crosslinked Epoxy LC Polymers)

  • 안원술;장진규;금창대;박이순
    • 공업화학
    • /
    • 제9권1호
    • /
    • pp.71-75
    • /
    • 1998
  • LCD용의 재료로 사용하기 위하여 새로이 합성된 저분자 액정 중간체들을 이용하여 epoxy resin 구조를 근간으로 하는 측쇄형 선형액정 고분자 및 가교된 측쇄형 액정 고분자를 만들고 이 들의 액정특성에 대하여 조사하였다. Alkyl spacer의 길이가 다른 방향족 amine 말단의 방향족 저분자 액정(ALC(n))과 ethylene glycol diglycidylether로부터 합성된 선형 측쇄형 고분자액정은 DSC 및 편광현미경 관찰로부터 mesogen으로 쓰인 저분자 액정과 같이 네마틱 액정상을 보였으며 spacer $-(CH_2){_n}-$의 길이에 따라 액정상-등방상 전이온도($T_{NI}$)는 even-odd현상을 나타내었다. 선형 및 가교형 측쇄 액정고분자의 $T_{NI}$는 저분자 액정의 그것에 비해 더 낮은 온도에서 나타났으며 또한 가교형 측쇄 액정고분자의 경우에는 가교제인 1,10-diaminodecane 사용량에 따른 $T_g$$T_{NI}$의 변화폭이 그렇게 크지 않은 것이 관찰되었다.

  • PDF

Synthesis and Properties of Combined Main-Chain/Side-Chain Liquid Crystalline Polymers with Cholesteryl and Azobenzene Groups

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Elastomers and Composites
    • /
    • 제54권1호
    • /
    • pp.14-21
    • /
    • 2019
  • Main-chain/side-chain liquid crystalline polymers (MCSCLCPs) combined with an azobenzene group and a cholesteryl group were synthesized to impart light and temperature sensitivity to the polymer. The polymers were designed with the azobenzene unit as the mesogenic group of the main-chain and various compositions of the azobenzene and cholesteryl units as the mesogenic group of the side-chain. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and ultraviolet-visible (UV-Vis) spectroscopy. All the MCSCLCPs were amorphous and exhibited enantiotropic liquid crystal phases; these polymers achieved the nematic phase with increasing content of the azobenzene group and exhibited the cholesteric phase with weak liquid crystallinity as the content of the cholesteryl group was increased. Furthermore, the polymers containing the azobenzene group showed photoisomerization when exposed to UV-Vis light, and the CP-A3C7 and CP-A5C5 polymers exhibited thermochromism in the temperature range of the liquid crystal phase.

Studies on the Ternary Blends of Liquid Crystalline Polymer and Polyesters

  • Kim, Seong-Hun;Kang, Seong-Wook
    • Fibers and Polymers
    • /
    • 제1권2호
    • /
    • pp.83-91
    • /
    • 2000
  • Thermotropic liquid crystalline polymer made up of poly(p-hydroxybenzoate) (PHB)-poly(ethylene terephthalate)(PET) 8/2 copolyester, poly(ethylene 2,6-naphthalate) (PEN) and PET were mechanically blended to pursue the liquid crystalline phase of ternary blends. Complex viscosities of blends decreased with increasing temperature and PHB content. DSC thermal analysis indicated that glass transition temperature (Tg) and melting temperature (Tm) of blends increased with increasing PHB content. Both tensile strength and initial modulus increased with raising PHB content and take-up speed of monofilaments. In the WAXS diagram, only PEN crystal reflection at 2Θ=$15.5^{\circ}C$ appeared but PET crystal reflection was not shown in all compositions. The degree of transesterification and randomness of blends increased with blending time but sequential length of both PEN and PET segment decreased.

  • PDF

Enhancement of Molecular Orientation of Liquid Crystal on Photoreactive Polymers by using Non-Photoreactive Naphthalenic Polyimide

  • Hah, Hyun-Dae;Sung, Shi-Joon;Cho, Ki-Yun;Kim, Won-Sun;Jeong, Yong-Cheol;Park, Jung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1169-1172
    • /
    • 2004
  • Polyimides are blended with photoreactive polymers in order to improve the thermal stability of molecular orientation of photoreactive groups induced by polarized UV irradiation. The polyimide/photopolymer blends can be applied for the photo-induced liquid crystal alignment layers. However, the polyimides are also decomposed by UV irradiation and this may have the negative effect on the orientation of liquid crystals. In order to elucidate the influence of polyimide on the molecular orientation of liquid crystal, non-photoreactive naphthalenic polyimide (1,4,5,8-naphthalene tetracarboxylic dianhydride} was selected for the blend alignment layers. We prepared the blends of photo-reactive coumarin polymers and naphthalenic polyimide, and investigated the orientation of liquid crystals. Thermal stability of the orientation of liquid crystals was enhanced due to the thermally stable polyimide. However, there was no other side-effect of polyimide on the orientation of liquid crystals and this might be attributed to the non-photo-reactivity of naphtahlenic polyimide.

  • PDF

The Effect of Phenoxymethyl Side Groups on the Liquid Crystal Alignment Behavior of Polystyrene Derivatives

  • Kang, Hyo;Lee, Jong-Chan;Kang, Dae-Seung
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.506-515
    • /
    • 2009
  • We synthesized a series of polystyrene derivatives containing various side chain terminal moieties, such as phenoxymethyl, 4-methoxyphenoxymethyl, 4-fluorophenoxymethyl, 4-methylphenoxymethyl, and 4-trifluoromethoxyphenoxymethyl groups, using polymer analogous reactions, in order to investigate the effect of the side group on their liquid crystal (LC) alignment behaviors. The polymers containing 4-fluorophenoxymethyl, 4-methylphenoxymethyl, or 4-trifluoromethoxyphenoxymethyl side groups had lower surface energy values and the LC cells fabricated using the unrubbed films of these polymers showed homeotropic LC alignment behavior. The LC cells fabricated using the rubbed films of the polymers containing phenoxymethyl or 4-fluorophenoxymethyl groups showed homogeneous planar LC alignment behavior in which the LCs were aligned perpendicular to the rubbing direction. This homogeneous planar and perpendicular alignment behavior was ascribed to the favorable anisotropic interactions between the LC molecules and the side groups preferentially oriented perpendicular to the rubbing direction.

Synthesis and Properties of Side Chain Liquid Crystalline Polymers with Siloxane Flexible Chain

  • Park, Jong-Ryul;Bang, Moon-Soo;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • 제52권3호
    • /
    • pp.173-179
    • /
    • 2017
  • Side-chain liquid crystalline polymers having polysiloxane skeletons were synthesized by a thiol-ene reaction, using two kinds of mesogenic groups: a cholesteryl group for induction into a cholesteric liquid crystal phase and a triazomesogenic group for imparting light-sensitivity. All the synthesized polymers were crystalline, except the one with a single cholesteryl group. Crystallinity, glass transition temperature, and melt transition temperature increased with increasing content of the azomesogenic group. The polymer (P-C10A0) with a single cholesteryl group has a cholesteric phase, the one (P-C0A10) with a single azomesogenic group has a smectic phase, and those with both types of mesogenic groups showed both smectic and cholesteric phases. The temperature ranges of the two liquid crystalline phases in the co-polymers were independent of the contents of the two types of mesogenic groups. The rate of photoisomerization of the light-sensitive azobenzene group in the polymer decreased with increasing azobenzene content due to steric hindrance between the azomesogenic groups.

SHG을 이용한 LCD 배향막 표면 특성분석 (Surface characterization of polyimides for LCDs by second-harmonic generation technique)

  • 정태혁;윤태훈;김재창
    • 전자공학회논문지D
    • /
    • 제34D권3호
    • /
    • pp.114-122
    • /
    • 1997
  • The surface characteristics of polymers for liquid crystal alignment are studied by optical second-harmonic genertion (SHG) tecnique. Using SHG technique, the LC monolayers on rubbed polymer have already been studied. But, in this paper, the SH signals of polymer were observed and the orientational distribution of oriented polymer was studied. Te SHG experiments for side-chain type and main-chain type polymers are carried out as a function of rubbing strength. The orentational distribution of surface molecules of polymers is compared with the LC pretilt angle measured by the crystal rotation method.

  • PDF