Browse > Article
http://dx.doi.org/10.14478/ace.2017.1005

Synthesis and Properties of Cholesteric Liquid Crystalline Polymers with Isosorbide Group  

Gu, Su-Jin (Division of Advanced Materials Science and Engineering, Kongju National University)
Yoon, Doo-Soo (Dept. of Bioenvironmental & Chemical Engineering, Chosun College of Science & Technology)
Bang, Moon-Soo (Division of Advanced Materials Science and Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.2, 2017 , pp. 230-236 More about this Journal
Abstract
We synthesized liquid crystalline polymers containing isosorbide group as a cholesteric derivative and methylene group for controlling the transition temperature to the liquid crystal phase. Effects of the concentration of the isosorbide group and the position of the methylene group on the properties of the liquid crystalline polymer were investigated. Among all the synthesized polymers, polymers (MnHI-x) with a methylene group in the main chain showed higher melting transition temperature and thermal stability than those (SnBI-x) with a methylene group in the side chain. All the synthesized polymers showed an enantiotropic liquid crystal phase. The polymers having 10 mol% isosorbide as a cholesteric liquid crystal phase derivative showed nematic phase, and those having 20 mol% or more isosorbide showed a cholesteric or chiral smectic phase. Thus, we can conclude that the isosorbide group plays a role as a cholesteric liquid crystal phase derivative.
Keywords
cholesteric; flexible spacer; isosorbide; liquid crystal; thermochromism;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Seeboth, D. Loetzsch, and R. Ruhmann, Piezochromic polymer materials displaying pressure changes in bar-ranges, Am. J. Mater. Sci., 1, 139-142 (2012).   DOI
2 W. E. Lee, C. L. Lee, T. Sakaguchi, M. Fujiki, and G. Kwak, Piezochromic fluorescence in liquid crystalline conjugated polymer, Chem. Commun., 47, 3526-3528 (2011).   DOI
3 B. Y. Woo, D. J. Min, H. S. Baek, S. H. Kim, J. Y. Hwang, Y. H. Park, J. H. Lee, and S. S. Shin, A study of the stability and moisturizing effect of non-animal cholesteric liquid crytal, J. Soc. Cosmet. Sci. Korea, 40, 141-153 (2014).
4 V. A. Mallia and N. Tamaoki, Design of chiral dimesogens containing cholesteryl groups; Formation of new molecular organizations and their application to molecular photonics, Chem. Soc. Rev., 33, 76-84 (2004).   DOI
5 J. Lub, W. P. M. Nijssen, R. T. Wegh, J. P. A. Vogels, and A. Ferrer, Synthesis and properties of photoisomerizable derivatives of isosorbide and their use in cholesteric filters, Adv. Funct. Mater., 15, 1961-1972 (2005).   DOI
6 Y. Kim, M. Wada, and N. Tamaoki, Dicholesteryl icosanedioate as a glass-forming cholesteric liquid crystal: Properties, additive effects and application in color recording, J. Mater. Chem. C, 2, 1921-1926 (2014).   DOI
7 F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup, and J. P. Pascault, Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review, Prog. Polym. Sci., 35, 578-622 (2010).   DOI
8 C. Lavilla and S. M. Guerra, Sugar-based aromatic copolyesters; A comparative study regarding isosorbide and diacetalized alditols as sustainable comonomers, Green Chem., 15, 144-151 (2013).   DOI
9 E. C. Varkey and K. Sreekumar, Isosorbide based chiral polyurethanes: Optical and thermal studies, J. Mater. Sci., 45, 1912-1920 (2010).   DOI
10 T. Krawinkel and H. R. Kricheldorf, New polymer syntheses. 95. Photosetting cholesteric polyesters derived from 4-hydroxycinnamic acid and isosorbide, Macromolecules, 31, 1016-1023 (1998).   DOI
11 H. R. Kricheldorf, S. Chatti, G. Schwarz, and R. P. Kruger, Macrocycles 27: Cyclic aliphatic polyesters of isosorbide, J. Polym. Sci. A, 41, 3414-3424 (2003).   DOI
12 N. N. Chavan, Synthesis and characterization of cholesteric thermotropic liquid crystalline polyester base on isosorbide, Mater. Sci. Appl., 2, 1520-1527 (2011).
13 H. Kim, E. J. Park, S. Kim, M. S. Lee, I. S. Kee, and S. Jung, Improvement of bending recovery of polyester film via physical aging treatment, Polymer (Korea), 39, 593-600 (2015).   DOI
14 M. S. Bang, D. S. Yoon, and J. K. Choi, Synthesis and properties of semi-flexible aromatic polyesters containing pentamethylene group in main chain, Elastom. Compos., 44, 436-441 (2009).
15 S. Antoun, R. W. Lenz, and J. I. Jin, Liquid crystal polymers. IV. Thermotropic polyesters with flexible spacers in the main chain, J. Polym. Sci. Polym. Chem. Ed., 19, 1901-1920 (1981).   DOI
16 A. C. Griffin and S. J. Havens, Mesogenic polymers. III. Thermal properties and synthesis of three homologous series of thermotropic liquid crystalline "Backbone" polyesters, J. Polym. Sci. B, 19, 951-969 (1981).
17 J. H. Chang, S. M. Lee, N. J. Park, B. W. Jo, and M. S. Bang, Blends of new thermotreopic LCP having alkoxy side-groups with PBT, Polymer (Korea), 18, 966-975 (1994).
18 M. Ballauff, Rigid rod polymers having flexible side chains, 1. Thermotropic poly (1,4-phenylene 2,5-dialkoxyterephthalate)s, Makromol. Chem., Rapid Commun., 7, 407-414 (1986).   DOI
19 F. Higashi, T. Mashimo, and I. Takahashi, Preparation of aromatic polyesters by direct polycondenastion with thionyl chloride in pyridine, J. Polym. Sci. Polym. Chem. Ed., 24, 91-102 (1986).