The Effect of Phenoxymethyl Side Groups on the Liquid Crystal Alignment Behavior of Polystyrene Derivatives

  • Kang, Hyo (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Jong-Chan (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kang, Dae-Seung (Department of Electrical Engineering, Soongsil University)
  • Published : 2009.07.25

Abstract

We synthesized a series of polystyrene derivatives containing various side chain terminal moieties, such as phenoxymethyl, 4-methoxyphenoxymethyl, 4-fluorophenoxymethyl, 4-methylphenoxymethyl, and 4-trifluoromethoxyphenoxymethyl groups, using polymer analogous reactions, in order to investigate the effect of the side group on their liquid crystal (LC) alignment behaviors. The polymers containing 4-fluorophenoxymethyl, 4-methylphenoxymethyl, or 4-trifluoromethoxyphenoxymethyl side groups had lower surface energy values and the LC cells fabricated using the unrubbed films of these polymers showed homeotropic LC alignment behavior. The LC cells fabricated using the rubbed films of the polymers containing phenoxymethyl or 4-fluorophenoxymethyl groups showed homogeneous planar LC alignment behavior in which the LCs were aligned perpendicular to the rubbing direction. This homogeneous planar and perpendicular alignment behavior was ascribed to the favorable anisotropic interactions between the LC molecules and the side groups preferentially oriented perpendicular to the rubbing direction.

Keywords

References

  1. T. Kohki, H. Masaki, K. Mitsuhiro, I. Nobuyuki, H. Ray, and S. Masanori, Alignment Technologies and Applications of Liquid Crystal Devices, Taylor & Francis, New York, 2005
  2. K. Ichimura, Chem. Rev., 100, 1847 (2000) https://doi.org/10.1021/cr980079e
  3. M. O’Neill and S. M. Kelly, J. Phys. D: Appl. Phys., 33, R67 (2000) https://doi.org/10.1088/0022-3727/33/10/201
  4. M. Schadt, Annu. Rev. Mater. Sci., 27, 305 (1997) https://doi.org/10.1146/annurev.matsci.27.1.305
  5. N. Almeria and R. Paul, Chem. Rev., 102, 4139 (2002) https://doi.org/10.1021/cr970155y
  6. M. Ree, Macromol. Res., 14, 1 (2006) https://doi.org/10.1007/BF03219064
  7. M. K. Ghosh and K. L. Mittal, Polyimides: Fundamentals and Applications, Marcel Dekker, New York, 1996
  8. M. B. Feller, W. Chen, and T. R. Shen, Phys. Rev. A, 43, 6778 (1991) https://doi.org/10.1103/PhysRevA.43.6778
  9. N. A. J. van Aerle and A. J. W. Tol, Macromolecules, 27, 6520 (1994) https://doi.org/10.1021/ma00100a042
  10. K.-W. Lee, S.-H. Paek, A. Lien, C. Durning, and H. Fukuro, Macromolecules, 29, 8894 (1996) https://doi.org/10.1021/ma960683w
  11. K. Weiss, C. Woll, E. Hohm, B. Fiebranz, G. Forstmann, B. Peng, V. Scheumann, and D. Johannsmann, Macromolecules, 31, 1930 (1998) https://doi.org/10.1021/ma971075z
  12. J. Stohr, M. G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, Macromolecules, 31, 1942 (1998) https://doi.org/10.1021/ma9711708
  13. R. Meister and B. Jerome, Macromolecules, 32, 480 (1999) https://doi.org/10.1021/ma980592u
  14. S. W. Lee, S. I. Kim, Y. H. Park, M. Ree, Y. N. Rim, H. J. Yoon, H. C. Kim, and Y.-B. Kim, Mol. Cryst. Liq. Cryst., 349, 279 (2000) https://doi.org/10.1080/10587250008024919
  15. J. J. Ge, C. Y. Li, G. Xue, I. K. Mann, D. Zhang, S.-Y. Wang, F. W. Harris, S. Z. D. Cheng, S.-C. Hong, X. Zhuang, and Y. R. Shen, J. Am. Chem. Soc., 123, 5768 (2001) https://doi.org/10.1021/ja0042682
  16. D. Kim, M. Oh-e, and Y. R. Shen, Macromolecules, 34, 9125 (2001) https://doi.org/10.1021/ma0100908
  17. B. Chae, S. B. Kim, S. W. Lee, S. I. Kim, W. Choi, B. Lee, M. Ree, K. H. Lee, and J. C. Jung, Macromolecules, 35, 10119 (2002) https://doi.org/10.1021/ma020639i
  18. S. W. Lee, B. Chae, B. Lee, W. Choi, S. B. Kim, S. I. Kim, S.-M. Park, J. C. Jung, K. H. Lee, and M. Ree, Chem. Mater., 15, 3105 (2003) https://doi.org/10.1021/cm034055m
  19. S. J. Lee, J. C. Jung, S. W. Lee, and M. Ree, J. Polym. Sci. Part A: Polym. Chem., 42, 3130 (2004) https://doi.org/10.1002/pola.20165
  20. S. G. Hahm, T. J. Lee, T. Chang, J. C. Jung, and W.-C. Zin, Macromolecules, 39, 5385 (2006) https://doi.org/10.1021/ma060956f
  21. K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, Appl. Phys. Lett., 90, 194102 (2007) https://doi.org/10.1063/1.2737427
  22. S. I. Kim, M. Ree, T. J. Shin, and J. C. Jung, J. Polym. Sci. Part A: Polym. Chem., 37, 2909 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2909::AID-POLA24>3.0.CO;2-B
  23. Y. J. Lee, J. G. Choi, I.-K. Song, J. M. Oh, and M. H. Yi, Polymer, 47, 1555 (2006) https://doi.org/10.1016/j.polymer.2006.01.001
  24. W. Dong and S.-H. Paek, Macromol. Res., 12, 251 (2004) https://doi.org/10.1007/BF03218396
  25. J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, J. Appl. Phys., 62, 4100 (1987) https://doi.org/10.1063/1.339124
  26. S. Ishihara, H. Wakemoto, K. Nakazima, and Y. Mastuo, Liq. Cryst., 4, 669 (1989) https://doi.org/10.1080/02678298908033202
  27. D.-S. Seo, K.-I. Muroi, T.-R. Isogomi, H. Matsuda, and S. Kobayashi, Jpn. J. Appl. Phys., 31, 2165 (1992) https://doi.org/10.1143/JJAP.31.2165
  28. D.-S. Seo, N. Yoshida, S. Kobayashi, M. Nishikawa, and Y. Yabe, Jpn. J. Appl. Phys., 34, 4876 (1995) https://doi.org/10.1143/JJAP.34.4876
  29. A. D. Schwab, D. M. Agra, J.-H. Kim, S. Kumar, and A. Dhinojwala, Macromolecules, 33, 4903 (2000) https://doi.org/10.1021/ma9919514
  30. M. Oh-e, S.-C. Hong, and Y. R. Shen, Appl. Phys. Lett., 80, 784 (2002) https://doi.org/10.1063/1.1435069
  31. S. W. Lee, B. Chae, H. C. Kim, B. Lee, W. Choi, S. B. Kim, T. Chang, and M. Ree, Langmuir, 19, 8735 (2003) https://doi.org/10.1021/la034883u
  32. S. W. Lee, J. Yoon, H. C. Lee, B. Lee, T. Chang, and M. Ree, Macromolecules, 36, 9905 (2003) https://doi.org/10.1021/ma035258z
  33. S. G. Hahm, T. J. Lee, S. W. Lee, J. Yoon, and M. Ree, Mater. Sci. Eng. B, 132, 54 (2006) https://doi.org/10.1016/j.mseb.2006.02.036
  34. H. Kang, K.-S. Kwon, D. Kang, and J.-C. Lee, Macromol. Chem. Phys., 208, 1853 (2007) https://doi.org/10.1002/macp.200700270
  35. H. Kang, D. Kang, and J.-C. Lee, Liq. Cryst., 35, 1005 (2008) https://doi.org/10.1080/02678290802308076
  36. H. Kang, J. S. Park, D. Kang, and J.-C. Lee, Macromol. Chem. Phys., 209, 1900 (2008) https://doi.org/10.1002/macp.200800257
  37. G. Odian, Principles of Polymerization, J. Wiley & Sons, New York, 2004, Chapter 3
  38. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969) https://doi.org/10.1002/app.1969.070130815
  39. G. J. Sprokel, The Physics and Chemistry of Liquid Crystal Devices, Springer, New York, 1980
  40. J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook, J. Wiley & Sons, New York, 1999, Chapter 6
  41. R. A. Hayes, J. Appl. Polym. Sci., 15, 318 (1961)
  42. B. Wesslin, R. W. Lenz, W. J. MacKnight, and F. E. Karaz, Macromolecules, 4, 24 (1971) https://doi.org/10.1021/ma60019a006
  43. J.-C. Lee, M. H. Litt, and C. E. Rogers, J. Polym. Sci. Part B: Polym. Phys., 36, 75 (1998) https://doi.org/10.1002/(SICI)1099-0488(19980115)36:1<75::AID-POLB9>3.0.CO;2-T
  44. D. W. Van Krevelen, Properties of Polymers, Elsevier, Amsterdam, 1990, Chapter 21
  45. K. Sakamoto, R. Arafune, S. Ushioda, Y. Suzuki, and S. Morokawa, J. Appl. Phys., 80, 431 (1996) https://doi.org/10.1063/1.362744
  46. G. D. Hiepas, J. M. Sandas, and D. L. Allara, J. Phys. Chem. B, 102, 10556 (1998) https://doi.org/10.1021/jp983363i
  47. D.-M. Shin, D.-M. Song, and Y.-B. Kim, Mater. Sci. Eng. C, 24, 127 (2004) https://doi.org/10.1016/j.msec.2003.09.008
  48. S. W. Lee, B. Chae, S. G. Hahm, B. Lee, S. B. Kim, and M. Ree, Polymer, 45, 4068 (2005)
  49. B. S. Ban, Y. N. Rim, and Y. B. Kim, Liq. Cryst., 27, 125 (2000) https://doi.org/10.1080/026782900203290
  50. M. Lu, Jpn. J. Appl. Phys., 43, 8156 (2004) https://doi.org/10.1143/JJAP.43.8156
  51. J.-B. Lee, H.-K. Lee, J.-C. Park, and Y.-B. Kim, Mol. Cryst. Liq. Cryst., 439, 161 (2005) https://doi.org/10.1080/15421400590955073
  52. S.-K. Oh, M. Nakagawa, and K. Ichimura, J. Mater. Chem., 11, 1563 (2001) https://doi.org/10.1039/b007739i
  53. Y. Matsuzawa and M. Matsumoto, Mol. Cryst. Liq. Cryst., 412, 181 (2004) https://doi.org/10.1080/15421400490439798
  54. H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baik, Jpn. J. Appl. Phys., 44, 4092 (2005) https://doi.org/10.1143/JJAP.44.4092
  55. A. D. Price and D. K. Schwartz, Langmuir, 22, 9753 (2006) https://doi.org/10.1021/la061885g
  56. Y. J. Lee, Y. W. Kim, J. D. Ha, J. M. Oh, and M. H. Yi, Polym. Adv. Technol., 18, 226 (2007) https://doi.org/10.1002/pat.862
  57. S. Turri, M. Scicchitano, R. Marchetti, A. Sanguineti, and S. Radice, Fluoropolymers: vol. 2 Properties, Plenum Publishers, New York, 1999