• Title/Summary/Keyword: Liquid Conductivity

Search Result 415, Processing Time 0.031 seconds

A Study on the Flooding Phenomena of Cathode Flow Path with Operating Temperatures in a PEM Fuel Cell (고분자전해질형 연료전지의 작동 온도에 따른 공기극 유로 내 플러딩 현상에 관한 연구)

  • Kim Han-Sang;Ha Taehun;Min Kyoungdoug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.326-329
    • /
    • 2005
  • Proton exchange membrane (PEM) should be sufficiently hydrated with proper water management to maintain a good ionic conductivity and performance of a PEM fuel cell. However. cathode flooding resulting from excess water can impede the transport of reactants and hence deteriorate the fuel cell performance. For the PEM fuel cell to be commercially viable as vehicle or portable applications, the flooding on the cathode side should be minimized during the fuel cell operation. In this study, visualization technique was applied to understand the cathode flooding phenomena on the cathode side of a PEM fuel cell. To this end. a transparent PEM unit fuel cell wi th an act ive area of $25cm^2$ was designed and manufactured to allow for the visualization of cathode channel with performance characteristics. Two-phase flow resulting from the electro-chemical reaction of fuel cell was investigated experimentally. The images photographed by CCD camera with cell operating temperatures $(30\~50^{\circ}C)$ were presented. Results indicated that the flooding on the cathode side first occurs near the exit of cathode channel. As the operating temperature of fuel cell increases. it was found that liquid water droplets tend to evaporate easily and it can have an influence on lowering the flooding level. It is expected that this study can effectively contribute to the detailed researches on modeling water transport of an operating PEM fuel cell including two-phase flow phenomena.

  • PDF

Installation and Test Run of Comprehensive Analysis System for SF6 in Power Equipment

  • Lee, Jeong Eun;Kim, Kwang Sin;Kim, Ah Reum;Park, Seoksoon;Kim, Kyeongsook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • After $SF_6$, which is being used in power equipment as an insulating material, is classified as one of the 6 major greenhouse gases, the maintenance and the refinement of used $SF_6$ started to get attention. In regard to this, KEPCO Research Institute (KEPRI) is developing $SF_6$ recovery and refinement technology starting with establishing a comprehensive $SF_6$ analysis system. With the analysis system, qualitative and quantitative analyses of the purity and the impurities of $SF_6$ before and after recovery, and before and after refinement have been carried out. The analysis system is comprised of GC-DID (Gas Chromatograph -Discharge Ionization Detector) for trace impurities analysis, GC-TCD (Thermal Conductivity Detector) for analyses of $SF_6$ purity and major impurities concentration from several hundred ppm up to percent range, GC-MSD (Mass Selective Detector) for analyses of impurities not included in standard gas, FT-IR (Fourier Transform-Infrared) Spectrometer for analysis of HF and $SO_2$, and moisture analyzer for analysis of moisture below 100 ppm. With this analysis system, complete analysis method of $SF_6$ has been established. This analysis system is being used in the maintenance of power equipment and the development of $SF_6$ recovery and refinement technologies. In this paper, the analysis results of four samples - gas and liquid phase $SF_6$ samples from a $SF_6$ refinement system before and after refinement are presented.

A Case Study of Bottom Liner Construction Using Composite Liner Technology in a Solid Waste Landfill (복합차수층 조성기술을 이용한 폐기물매립지 바닥차수층 시공사례)

  • Lee, Kyu-Jung;Lee, Nam-Hoon;Park, Soo-Young;Jeon, Won-Pyo;Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.90-96
    • /
    • 2007
  • Modern waste management units, so-called "landfills" protect human health and environment from hazardous leachate and gas. Accordingly, it must be constructed with a bottom liner system that includes a gas collection layer. Leachate is the contaminated liquid that drains from the waste material pollutes ground water. For this reason. bottom liner system must have durability and low hydraulic conductivity (in case of compacted clay liner, no more than $1{\times}10^{-7}cm/sec$ ). P county in Kangwon province constructed a solid waste landfill with bottom liner system. In this study. it is mainly introduced that the test results on construction and quality control of bottom liner system by "Multiple composite liner construction technology", which is selected for bottom liner system in P solid waste landfill.

  • PDF

Investigation of Seasonal Characteristics of Contaminants and Hydrochemical Factors in an Aquifer for Application of In Situ Reactive Zone Technology (원위치 반응존 공법 적용을 위한 대수층내 오염물질 및 환경영향인자의 계절 특성 평가)

  • Ahn, Jun-Young;Kim, Cheolyong;Kim, Tae Yoo;Jun, Seong-Chun;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.192-203
    • /
    • 2016
  • A field investigation was conducted on an aquifer contaminated with trichloroethylene (TCE) for application of in situ reactive zone treatment using nanosized zero-valent iron (NZVI). The aquifer was an unconfined aquifer with a mean hydraulic conductivity of $5.14{\times}10^{-4}cm/sec$, which would be favorable for NZVI injection. Seasonal monitoring of TCE concentration revealed a presence of non-aqueous phase liquid form of TCE near IW (injection well). The hydrochemical data characterized the site groundwater to be a $Ca-HCO_3$ type. The average value of Langelier Saturation Index of the groundwater was -1.33, which implied that the site was favorable for corrosion of NZVI. Dissolved oxygen (DO) concentration varied between 2.5~11.5 mg/L, which indicated that DO would greatly compete with TCE as an electron acceptor. The hydrogeological and hydrochemical characterization reveals that the time around November would be appropriate for NZVI injection when water level and temperature are relatively high and DO concentration is low.

The Effect of Long-term Organic Matter Addition on the Physicochemical Properties of Paddy Soil (답토양(沓土壤)에서 퇴비연용(堆肥連用)이 토양(土壤)의 이화학적성질(理化學的性質)에 미치는 영향(影響))

  • Shin, Jae Sung;Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.1
    • /
    • pp.19-23
    • /
    • 1975
  • In order to find out the effect of long-term annual additions of organic matter on the physico-chemical properties of paddy soil, the soil with and without compost application has been analysed. 1. There was no significant difference in the particle size distribution between compost and uncompost treatment, however, hydraulic conductivity, sedimention volume were remarkedly increased in compost. 2. Bulk density and soil strength were decreased in organic matter additions, but porosity increased. 3. Relative to Atterberg Limits, liquid limit, plastic limit, and elastic index were increased in compost. 4. Aggregate size distribution was slightly increased in additions of organic matter. 5. Regarding to chemical properties, pH, organic matter content, C.E.C. and extractable cation were increased in organic matter additions.

  • PDF

Formation of Plasma Damage-Free ITO Thin Flims on the InGaN/GaN based LEDs by Using Advanced Sputtering

  • Park, Min Joo;Son, Kwang Jeong;Kwak, Joon Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.312-312
    • /
    • 2013
  • GaN based light emitting diodes (LEDs) are important devices that are being used extensively in our daily life. For example, these devices are used in traffic light lamps, outdoor full-color displays and backlight of liquid crystal display panels. To realize high-brightness GaN based LEDs for solid-state lighting applications, the development of p-type ohmic electrodes that have low contact resistivity, high optical transmittance and high refractive index is essential. To this effect, indiumtin oxide (ITO) have been investigated for LEDs. Among the transparent electrodes for LEDs, ITO has been one of the promising electrodes on p-GaN layers owing to its excellent properties in optical, electrical conductivity, substrate adhesion, hardness, and chemical inertness. Sputtering and e-beam evaporation techniques are the most commonly used deposition methods. Commonly, ITO films on p-GaN by sputtering have better transmittance and resistivity than ITO films on p-GaN by e-bam evaporation. However, ITO films on p-GaN by sputtering have higher specific contact resistance, it has been demonstrated that this is due to possible plasma damage on the p-GaN in the sputtering process. In this paper, we have investigated the advanced sputtering using plasma damage-free p-electrode. Prepared the ITO films on the GaN based LEDs by e-beam evaporation, normal sputtering and advanced sputtering. The ITO films on GaN based LEDs by sputtering showed better transmittance and sheets resistance than ITO films on the GaN based LEDs by e-beam evaporation. Finally, fabricated of GaN based LEDs by using advanced sputtering. And compared the electrical properties (measurement by using C-TLM) and structural properties (HR-TEM and FE-SEM) of ITO films on GaN based LEDs produced by e-beam evaporation, normal sputtering and advanced sputtering. As a result, It is expected to form plasma damage free-electrode, and better light output power and break down voltage than LEDs by e-beam evaporation and normal sputter.

  • PDF

Development of Automatic Nutrient-Solution Control System Using a Low -Cost and Precise Liquid Metering Device (액제 정밀계량장치를 이용한 액제 자동조제 시스템개발)

  • 류관희;홍순호;이규철;이정훈;황호준
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1997.06c
    • /
    • pp.89-98
    • /
    • 1997
  • This study was conducted to develop an automatic nutrient-solution control system for small-scale growers. The nutrient-solution control system consisted of a low-cost and precise metering device and a personal computer. The system controlled electric conductivity(EC) and pH of nutrient-solution based on the time-based feedback control method with the information about temperature, EC, and pH of the nutrient-soIution. The performance of the nutrient-solution control system was evaluated through the control of EC and pH while compared with those of commercial nutrient-solution control system. Also an experimental cultivation of tomato was conducted to verify and to improve the developed system. Results of this study were as follows. 1. An automatic nutrient-solution control system based on a low-cost and precise metering device was developed. 2. The developed system controlled EC and pH within $\pm$0.05 mS/cm and $\pm$0.2 pH full scale error respectively at $24^{/circ}C$. 3. When using the commercial system, the controlled values of EC and pH of the 500l of water were 1.29 mS/cm and 6.1 pH for the setting points of 1.4 mS/cm and 6.0 pH respectively at $22^{/circ}C$. 4. The developed nutrient-solution control system showed $\pm$0.05 mS/cm of deviation from the setting EC value over the experimental cultivation period. 5. The deviation from the average values of Ca and Mg mass content in the several nutrient-solution were 0.5% and 1.8% respectively.

  • PDF

Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites (무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Development of Thin-Film Thermo-Electrochemical Cell for Harvesting Waste Thermal Energy (폐열 에너지 수집을 위한 박막형 열-전기화학전지 개발)

  • Im, Hyeongwook;Kang, Tae June;Kim, Dae Weon;Kim, Yong Hyup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.1010-1015
    • /
    • 2012
  • In this study, a thin-film thermo-electrochemical cell that directly converts waste thermal energy into electrical energy was fabricated. Electrical conductivity of conducting carbon fiber, which was used as flexible electrode, was increased through coating of carbon nanotube, and resistance of the CNT-coated fiber electrode was not changed even after bending test with various curvatures. Maximum output power of the thermocell was increased quadratically with the temperature difference, and showed a value of about 2.5 mW/kg at temperature difference of $3.4^{\circ}C$. As a result of discharge test for 12 hours, it is confirmed that the cell can operates continuously. And thin-film thermocell wrapped around a pipe with hot liquid flowing within was demonstrated. Internal resistance of the cell was decreased with various curvature of heat pipe, and maximum output power was increased by 30 %. Therefore, the cell can be applied to various heat source.

Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells (고분자 분쇄 기술을 활용한 고체 알칼리연료전지용 이오노머 바인더 용액 개발)

  • Shin, Mun-Sik;Kim, Do-Hyeong;Kang, Moon-Sung;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.107-113
    • /
    • 2016
  • In this study, an anion-exchange ionomer solution was prepared by grinding poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) in liquid nitrogen for solid alkaline fuel cells (SAFCs). Type of quaternized PPO (QPPO) solutions was controlled by grinding time. The ionomer binder solutions were characterized in terms of dispersity, particle size, and electrochemical properties. As a result, ionomer binder solutions using grinded polymer showed higher dispersion and smaller particle size distribution than that using non-grinded polymer. The highest ionic conductivity and IEC of the membrane recast by using BPPO-G120s were $0.025S\;cm^{-1}$ and $1.26meq\;g^{-1}$, respectively.