• Title/Summary/Keyword: Liquid Chromatography-tandem Mass Spectrometry

Search Result 405, Processing Time 0.04 seconds

Development of Analytical Method for Colistin in Fish and Shrimp using Liquid Chromatography Mass Spectrometry (LC-MS/MS를 이용한 수산물 중 콜리스틴 분석법 개발)

  • Shin, Dasom;Kang, Hui-Seung;Lee, Soo-Bin;Cho, Yoon-Jae;Cheon, So-Young;Jeong, Jiyoon;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.5
    • /
    • pp.319-326
    • /
    • 2016
  • Colistin is a last resort antimicrobial agent against multi-drug resistant Gram-negative bacteria. This study was conducted to develop an analytical method to determine colistin in fish and shrimp. The analytes were confirmed and quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the positive ion mode using multiple reaction monitoring (MRM). The sample was extracted with acidified 5% methanol (containing 0.5% formic acid). Then, solid phase extraction (SPE) was used for cleanup. Matrix-matched calibration curves were linear over the calibration ranges (0.05-1.2 mg/kg) for all the analytes into blank sample with $r^2$ > 0.99. All the values fulfilled the criteria requested by the Codex guidelines. Average recoveries ranged from 85.9% to 107.9%. The repeatability of measurements, expressed as the coefficient of variation (CV, %), was less than 15%. The limit of detection (LOD) was 0.02 mg/kg, and the limit of quantitation (LOQ) was 0.05 mg/kg. This improved method showed higher accuracy and acceptable sensitivity to meet the CAC guideline requirements and is applicable for the analysis of residual colistin (A+B) in fish and shrimp.

Multiple Determinations of Trichloroethylene Metabolites in a Concurrent Biological Media using High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry (HPLC-MS/MS를 이용한 트리클로로에틸렌 대사산물의 다중 분석법 확립)

  • Ahn, Youngah;Kho, Younglim;Lee, Seungho;Shin, Mi-Yeon;Jeon, Jung Dae;Kim, Sungkyoon
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.114-126
    • /
    • 2014
  • Objectives: We aimed to develop a measurement method of five metabolites of trichloroethylene (TCE) in a concurrent biological sample, e.g., trichloroacetic acid (TCA), dichloroacetic acid (DCA), S-(1,2-dichlorovinyl) glutathione (DCVG), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC) and to validate the method before application to pharmacokinetic study. Methods: TCE metabolites were simultaneously analyzed using high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) with as little as 50 ${\mu}L$ of serum and urine. DCA, TCA and NAcDCVC were extracted with diethyl ether, while DCVC and DCVG were extracted by solid phase extraction. This method was validated according to the guidelines for bioanalytical method validation of the Korean National Institute of Toxicological Research. Then, we determined the five metabolites in five strains of mice at 24 hr after exposure to 1 g TCE /kg body weight. Results: The limits of detection for the five metabolites in biological samples ranged from 0.001 to 0.076 nmol/mL, which is comparable to or better than those previously reported. Most calibration curves showed good linearity ($R^2=0.99$), and between-batch variation was less than 20% expressing acceptable robustness and reproducibility. Using this method, we found TCA and DCA were detected in all test mice at 24 hr after the oral administration while NAcDCVC and DCVC were detected in some strains, which showed strain-dependent metabolism of TCE. Conclusions: The present method could provide robust and accurate measurements of major key metabolites of TCE in biological media, which allowed concurrent analysis of TCE metabolism for limited amounts of biospecimens.

Cardioprotective effect of ginsenoside Rb1 via regulating metabolomics profiling and AMP-activated protein kinase-dependent mitophagy

  • Hu, Jingui;Zhang, Ling;Fu, Fei;Lai, Qiong;Zhang, Lu;Liu, Tao;Yu, Boyang;Kou, Junping;Li, Fang
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.255-265
    • /
    • 2022
  • Background: Ginsenoside Rb1, a bioactive component isolated from the Panax ginseng, acts as a remedy to prevent myocardial injury. However, it is obscure whether the cardioprotective functions of Rb1 are related to the regulation of endogenous metabolites, and its potential molecular mechanism still needs further clarification, especially from a comprehensive metabolomics profiling perspective. Methods: The mice model of acute myocardial ischemia (AMI) and oxygen glucose deprivation (OGD)-induced cardiomyocytes injury were applied to explore the protective effect and mechanism of Rb1. Meanwhile, the comprehensive metabolomics profiling was conducted by high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS) and a tandem liquid chromatography and mass spectrometry (LC-MS). Results: Rb1 treatment profoundly reduced the infarct size and attenuated myocardial injury. The metabolic network map of 65 differential endogenous metabolites was constructed and provided a new inspiration for the treatment of AMI by Rb1, which was mainly associated with mitophagy. In vivo and in vitro experiments, Rb1 was found to improve mitochondrial morphology, mitochondrial function and promote mitophagy. Interestingly, the mitophagy inhibitor partly attenuated the cardioprotective effect of Rb1. Additionally, Rb1 markedly facilitated the phosphorylation of AMP-activated protein kinase α (AMPKα), and AMPK inhibition partially weakened the role of Rb1 in promoting mitophagy. Conclusions: Ginsenoside Rb1 protects acute myocardial ischemia injury through promoting mitophagy via AMPKα phosphorylation, which might lay the foundation for the further application of Rb1 in cardiovascular diseases.

Identification of Cisplatin-Resistance Associated Genes through Proteomic Analysis of Human Ovarian Cancer Cells and a Cisplatin-resistant Subline

  • Zhou, Jing;Wei, Yue-Hua;Liao, Mei-Yan;Xiong, Yan;Li, Jie-Lan;Cai, Hong-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6435-6439
    • /
    • 2012
  • Chemoresistance to cancer therapy is a major obstacle to the effective treatment of human cancers with cisplatin (DDP), but the mechanisms of cisplatin-resistance are not clear. In this study, we established a cisplatin-resistant human ovarian cancer cell line (COC1/DDP) and identified differentially expressed proteins related to cisplatin resistance. The proteomic expression profiles in COC1 before and after DDP treatment were examined using 2-dimensional electrophoresis technology. Differentially expressed proteins were identified using matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and high performance liquid chromatography-electrospray tandem MS (NanoUPLC-ESI-MS/MS). 5 protein spots, for cytokeratin 9, keratin 1, deoxyuridine triphosphatase (dUTPase), aarF domain containing kinase 4 (ADCK 4) and cofilin1, were identified to be significantly changed in COC1/DDP compared with its parental cells. The expression of these five proteins was further validated by quantitative PCR and Western blotting, confirming the results of proteomic analysis. Further research on these proteins may help to identify novel resistant biomarkers or reveal the mechanism of cisplatin-resistance in human ovarian cancers.

Bioactive lipids in gintonin-enriched fraction from ginseng

  • Cho, Hee-Jung;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Byung-Hwan;Rhim, Hyewon;Kim, Hyoung-Chun;Hwang, Sung-Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.209-217
    • /
    • 2019
  • Background: Ginseng is a traditional herbal medicine for human health. Ginseng contains a bioactive ligand named gintonin. The active ingredient of gintonin is lysophosphatidic acid C18:2 (LPA C18:2). We previously developed a method for gintonin-enriched fraction (GEF) preparation to mass-produce gintonin from ginseng. However, previous studies did not show the presence of other bioactive lipids besides LPAs. The aim of this study was to quantify the fatty acids, lysophospholipids (LPLs), and phospholipids (PLs) besides LPAs in GEF. Methods: We prepared GEF from white ginseng. We used gas chromatography-mass spectrometry for fatty acid analysis and liquid chromatography-tandem mass spectrometry for PL analysis, and quantified the fatty acids, LPLs, and PLs in GEF using respective standards. We examined the effect of GEF on insulin secretion in INS-1 cells. Results: GEF contains about 7.5% linoleic (C18:2), 2.8% palmitic (C16:0), and 1.5% oleic acids (C18:1). GEF contains about 0.2% LPA C18:2, 0.06% LPA C16:0, and 0.02% LPA C18:1. GEF contains 0.08% lysophosphatidylcholine, 0.03% lysophosphatidylethanolamine, and 0.13% lysophosphatidylinositols. GEF also contains about 1% phosphatidic acid (PA) 16:0-18:2, 0.5% PA 18:2-18:2, and 0.2% PA 16:0-18:1. GEFmediated insulin secretion was not blocked by LPA receptor antagonist. Conclusion: We determined four characteristics of GEF through lipid analysis and insulin secretion. First, GEF contains a large amount of linoleic acid (C18:2), PA 16:0-18:2, and LPA C18:2 compared with other lipids. Second, the main fatty acid component of LPLs and PLs is linoleic acid (C18:2). Third, GEF stimulates insulin secretion not through LPA receptors. Finally, GEF contains bioactive lipids besides LPAs.

Pistachio, Pomegranate and Olive Byproducts Added to Sheep Rations Change the Biofunctional Properties of Milk through the Milk Amino Acid Profile

  • Mucahit Kahraman;Sabri Yurtseven;Ebru Sakar;Aydin Das;Hamza Yalcin;Gulsah Gungoren;Mustafa Unal Boyraz;Ismail Koyuncu
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.124-138
    • /
    • 2023
  • This study was carried out to determine the effects of adding pistachio shell (PIS), pomegranate hull (POM), and olive pulp (OP) to the diet on milk amino acid and fatty acid parameters in Awassi sheep. In the study, 40 head of Awassi sheep, which gave birth at least twice, were used as animal material. Sheep were fed a control diet without added byproducts (CON), rations containing PIS, POM, and OP. Milk amino acid profile was determined by liquid chromatography-tandem mass spectrometry, milk fatty acid gas chromatography-flame ionization detection device. There was a dramatic reduction in alanine, citrulline, glutamine, glutamic acid, glycine, leucine, ornithine and alphaaminoadipic acid in the research groups. In the PIS group, argininosuccinic acid, gammaminobutyric acid, beta-alanine and sarcosine; In the POM group, asparagine, gammaminobutyric acid, beta-alanine, and taurine; In the OP group, a significant positive increase was found in terms of alanine, histidine, gammaminobutyric acid, and taurine amino acids. The applications in the study did not have a statistically significant effect on the ratio of short, medium and long chain fatty acids in milk (p>0.05). In the presented study, it was determined that PIS, POM, and OP, which were added to the sheep rations at a rate of 5%, caused significant changes in the milk amino acid profiles. In this change in milk amino acid profiles, the benefit-harm relationship should be considered.

Bacterial Identification and Detection of Equol in Korean Soybean Paste (한국 된장에서 Equol의 검출 및 미생물 동정)

  • Woo, Seung-Gyun;Lee, So-Yeon;Choi, Go-Woon;Hong, You-Jin;Lee, So-Min;Park, Kang Gyun;Eom, Yong-Bin
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.286-291
    • /
    • 2015
  • Equol has beneficial effects on human health. Fermented soy products contain equol, and many microbes participate in the equol production process. This study investigated fermented Korean soybean paste, doenjang. Thirty seven doenjang samples collected from different manufacturers were examined. Equol was detected in 3 samples (D2, D13, and D19) at the maximum content of 507 ng/100 g by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifteen microbial species were isolated and identified by 16S rRNA gene sequence analysis and by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Bacillus spp, Paenibacillus spp, Tetragenococcus spp, Stapylococcus spp, and Clostridium species were the predominant bacteria in equol containing doenjang samples.

Analysis of erectile dysfunction drugs and their analogues in counterfeit drugs and herbal medicines by LC-ESI-MS/MS

  • Lee, Ji Hyun;Jeong, Ji Hye;Park, Hyoung-Joon;Do, Jung Ah;Heo, Seok;Cho, Sooyeul;Yoon, Chang-Yong
    • Analytical Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.155-161
    • /
    • 2016
  • Distribution of various illegal or counterfeit drugs of seven approved erectile dysfunction drugs and their analogues has been increased, causing health problems such as cardiovascular disorder, tachycardia, headache, or vision disturbance. We used liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) to determine the erectile dysfunction drugs and their analogues in various counterfeit drugs. Eleven erectile dysfunction drugs and their analogues were detected, with sildenafil and its analogues being the most counterfeited compounds (73.8 %), followed by tadalafil and its analogues (25.4 %). The limits of detection (LOD) and the limits of quantitation (LOQ) of liquid-type and solid-type negative samples ranged from 0.1 to 3.3 ng/mL or ng/g and from 0.3 to 10.0 ng/mL or ng/g, respectively. The recoveries ranged from 84.3 to 112.3 % and 83.2 to 110.2 %, respectively. The contents of sildenafil and tadalafil in the various counterfeit drugs ranged from 21.0 to 947.5 mg/g and from 0.2 to 170.2 mg/g, respectively.

Rapid and Sensitive Analysis of Valproic Acid in Human Red Blood Cell by LC-MS/MS

  • Han, Song-Hee;Kim, Yun-Jeong;Jeon, Ji-Young;Hwang, Min-Ho;Im, Yong-Jin;Jeong, Jin-A;Lee, Chang-Seop;Chae, Soo-Wan;Kim, Min-Gul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1681-1685
    • /
    • 2012
  • A sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed to determine valproic acid in human red blood cell (RBC). It is important to measure the drug concentration of the RBC as well as that of the plasma because of drug partitioning for pharmacokinetic and pharmacodynamic study. The method was linear over the dynamic range of 1-100 ${\mu}g$/mL with a correlation coefficient $r$ = 0.9997. The linearity of this method was established from 1 to 100 ${\mu}g$/mL for valproic acid in red blood cell with accuracy and precision within 15% at all concentrations. The intra-run and inter-run assay accuracy and coefficient of variations are all within 15% for all QC samples prepared in plasma and red blood human samples. Then, valproic acid amount by protein precipitation in plasma was quantified by LC-MS/MS mass spectrometry. The distribution ratio of VPA in RBC and plasma was analyzed by clinical samples. Based on measurement of the valproic acid in human red blood cell, this method has been applied to clinical research for study of distribution ratio of valproic acid in blood.

Determination of acrylamide in food products (가공식품 중 아크릴아마이드 분석)

  • Chung, Hyung-Wook;Park, Sung-Kug;Choi, Dongmi
    • Analytical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.164-169
    • /
    • 2007
  • A selective analytical method of LC/MS/MS has been applied to determine the levels of acrylamide in food products. Food samples were 17 including 6 potato chips, and 11 french fries. The analysis of food samples includes extraction with DDDW, clean-up using C18 and mixed ion exchange SPE cartridges and detection by liquid chromatography tandem mass spectrometry. The mobile phase was a mixture of 0.1 % acetic acid and 0.5 % methanol in water. The target ions were identified and determined by ESI mass spectrometer. The overall recoveries were ranged from 91 % to 101 % and the limit of quantitation was $10{\mu}g/kg$. Depending on food kinds, the levels of acrylamide were variable and the average was 0.71 mg/kg for potato chips, and 0.34 mg/kg for french fries.