• Title/Summary/Keyword: Liquid Atomization

Search Result 949, Processing Time 0.025 seconds

Investigation on the Non-linear Injection Characteristics of GDI injector using 1D Simulation (1D 시뮬레이션 기반 GDI 인젝터의 비선형적 분사 특성 해석에 대한 연구)

  • Jinwoo Lee;Seoksu Moon;Donghan Hur;Jinsuk Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.169-175
    • /
    • 2023
  • Multi-injection scheme is being applied to GDI combustion to reduce PM and PN emission to meet the EU7 regulation. However, very short injection duration encounters the ballistic injection region, which injection quantity does not increase linearly with injection duration when applying multi-injection. In this study, numerical studies were conducted to reveal the cause of ballistic injection and the effect of design parameters on ballistic region using 1-D simulation, AMESim. Injection rate and injection quantity were compared with experiment to validate the established model, which showed the accuracy with 10% error. The model revealed that the tendency of ballistic region coincides with the needle motion behavior, which means that parameters at the upper part of needle such as electro-magnetic force, needle spring force and needle friction force have dominant effect on ballistic injection. To figure out the effect of electro-magnetic and needle friction force on ballistic, those parameters were varied to plus and minus 10% with model. The result showed that those parameters clearly changed the ballistic region characteristics, however, the impact became insignificant for outside of ballistic region, which means that the ballistic injection is mainly influenced by initial motion of injector needle.

Cumulative Distributions and Flow Structure of Two-Passage Shear Coaxial Injector with Various Gas Injection Ratio (2중 유로형 전단 동축 분사기의 기체 분사율에 따른 유동 및 입도분포)

  • Lee, Inchul;Kim, Dohun;Koo, Jaye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.675-682
    • /
    • 2013
  • To verify the effect of inner- and outer-stage gas jets, a shear coaxial injector was designed to analyze the axial velocity profile and breakup phenomenon with an increase in the measurement distance. When the measurement position was increased to Z/d=100, the axial flow showed a fully developed shape due to the momentum transfer, aerodynamic drag effect, and viscous mixing. An inner gas injection, which induces a higher momentum flux ratio near the nozzle, produces the greater shear force on atomization than an outer gas injection. Inner- and Outer-stage gas injection do not affect the mixing between the inner and outer gas flow below Z/d=5. The experiment results showed that the main effect of liquid jet breakup was governed by the gas jet of an inner stage. As the nozzle exit of the outer-stage was located far from the liquid column, shear force and turbulence breaking up of the liquid jets do not fully affect the liquid column. In the case of an inner-stage gas injection momentum flux ratio within 0.84, with the increase in the outer gas momentum flux ratio, the SMD decreases. However, at an inner-stage gas jet momentum flux ratio over 1.38, the SMD shows the similar distribution.

Manufacturing Technology for Tape Casting and Soft Magnetic Powder Using by Recycling Scrap of Fe-Si Electrical Sheet (Fe-Si 전기강판 폐스크랩을 이용한 연자성 분말 및 테이프 제조기술)

  • Hong, Won Sik;Kim, Sang Hyun;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.11-18
    • /
    • 2016
  • This study focused on examining the possibility for recycling of Fe-Si electric sheet. We manufactured Fe-6.5Si mother alloy using by Fe-Si electric sheet scrap for transformer core materials. And then, soft magnetic alloy powder which diameter and shape were $45{\sim}150{\mu}m$ and sphere type was prepared by gas atomization process. As we compared to commercial Fe-6.5Si powder, its diameter distribution and microstructure of recycled powder was a similar. To investigate the possibility of reusing the soft magnetic composite sheet for electronics, recycled powder was treated to have a high aspect ratio (AR), and we finally obtained the 65~66 AR and $2.3{\mu}m$ thickness powder. To release the residual stress of powder, heat treatment was conducted under $300{\sim}400^{\circ}C$, $N_2$ gas. And then, soft magnetic sheet was made by tape casting process using by those powders. After the density and permeability of tape was measured, and we confirmed that the recycled Fe-Si electric sheet scrap was possible to reuse the soft magnetic materials of electronics.

Fabrication Method of OPV using ESD Spray Coating (ESD 스프레이를 이용한 OPV 제작 기법)

  • Kim, Jungsu;Jo, Jeongdai;Kim, Dongsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.84.2-84.2
    • /
    • 2010
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active components in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT, which are printed with functional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manufacturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem: it is difficult to apply toa continuous process as a R2R printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, anelectrostatic atomizer sprays micro-drops from the solution injected into the capillary, with electrostatic force generated by electric potential of about tens of kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and Active layer which consist of the P3HT:PCBM. The result of experiment, organic solar cell using ESD thin film coated method is occurred efficiency of about 1.4%. Also, the case of only used to ESD method in the active layer coating is occurred efficiency of about 1.86% as the applying a spin coating in the PEDOT:PSS layer. We can expect that ESD method is possible for continuous process to manufacture in the organic solar cell or OLED device.

  • PDF

Speed-dependent Emission Characteristics of the Hazardous Air Pollutants from Diesel Medium-duty Trucks according to Emission Standards (배출허용기준 강화에 따른 차속별 경유 중형트럭의 유해대기오염물질 배출특성)

  • Hong, Heekyoung;Jung, Sungwoon;Son, Jihwan;Moon, Taeyoung;Lee, Sangeun;Moon, Sunhee;Yoon, Hyunjin;Kim, Jeongsoo;Kim, Jounghwa
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • This study was designed to investigate the emission characteristics of unregulated pollutants (Aldehyde, VOCs, PAHs) as well as regulated pollutants (CO, HC, NOx and PM) from diesel medium-duty trucks. The emission characteristics of unregulated and regulated pollutants were assessed based on regulation standards (EURO 4 and EURO 5) and intake weight (2.5 ton and 5 ton). The results show that unregulated and regulated pollutants remained almost unchanged at higher speeds but decreased at below 23.5 km/h. Reduction in unregulated and regulated pollutants was noticeable in vehicles of recent regulation standards and light intake weight. The analysis of aldehyde using UPLC showed that formaldehyde and acetaldehyde of aldehyde were most dominant. The GC/MS analysis showed that benzene, toluene, ethylbenzene and xylene of VOCs was over 80% followed by toluene, xylene, ethylbenzene and benzene. In addition, the analysis of PAHs using GC/TOF-MS indicated that bi- and tricyclic aromatic ring of aromatic compounds was 73% and 53% at 2.5 ton and 5 ton vehicles, respectively. The results of this study will be contributed to establish HAPs inventory.

Experimental Investigation on the Thermal Performance Enhancement of Cooling System for Vehicles using Water/Coolant-Based Al2O3 Nanofluids (물/부동액-기반Al2O3나노유체를 이용한 차량용 냉각시스템 성능 향상에 관한 실험적 연구)

  • Park, Y.-J.;Kim, H.J.;Lee, S.-H.;Choi, T.J.;Kang, Y.J.;Jang, S.P.
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.65-69
    • /
    • 2015
  • In this study, the thermal performance of vehicle's cooling system is experimentally investigated using the water/coolant-based $Al_2O_3$ nanofluids as working fluids. For the purpose, the water/coolant-based $Al_2O_3$ nanofluids are prepared by twostep method with gum arabic. In order to obtain the well-suspended nanofluids, the agglomerated $Al_2O_3$ nanoparticles are precipitated using centrifugal force and the experiments are performed with supernatant of them. The thermal conductivity is measured by transient hot wire method and the thermal conductivity of nanofluids is enhanced up to 4.8% as compared to that of base fluids. Moreover, the cooling performance of water/coolant-based $Al_2O_3$ nanofluids is evaluated using vehicle's engine simulator under the constant RPM condition. The results show that the cooling performance of automobile engine increases up to 5.9% using prepared nanofluids. To investigate the effect of nanofluids on exhaust gas, the $NO_x$ emission is measured during the operation with respect to time and 10.3% of $NO_x$ emission is decreased. The experimental results imply that the water/coolant-based $Al_2O_3$ nanofluids might be used as a next-generation vehicles' coolant

Development of Two-color Radiation Thermometer for Harsh Environments

  • Mohammed, Mohammed Ali Alshaikh;Kim, Ki-Seong
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.184-194
    • /
    • 2016
  • Many industrial processes require reliable temperature measurements in harsh environments with high temperature, dust, humidity, and pressure. However, commercially-available conventional temperature measurement devices are not suitable for use in such conditions. This study thus proposes a reliable, durable two-color radiation thermometer (RT) for harsh environments that was developed by selecting the appropriate components, designing a suitable mechanical structure, and compensating environmental factors such as absorption by particles and gases. The two-color RT has a simple, compactly-designed probe with a well-structured data acquisition system combined with efficient LabVIEW-based code. As a result, the RT can measure the temperature in real time, ranging from 300 to $900^{\circ}C$ in extremely harsh environments, such as that above the burden zone of a blast furnace. The error in the temperature measurements taken with the proposed two-color RT compared to that obtained using K-type thermocouple readouts was within 6.1 to $1.4^{\circ}C$ at a temperature range from 200 to $700^{\circ}C$. The effects of absorption by gases including $CO_2$, CO and $H_2O$ and the scattering by fine particles were calculated to find the transmittance of the two wavelength bands of operation through the path between the measured burden surface and the two-color probe. This method is applied to determine the transmittance of the short and long wavelength bands to be 0.31 and 0.51, respectively. Accordingly, the signals that were measured were corrected, and the true burden surface temperature was calculated. The proposed two-color RT and the correction method can be applied to measure temperatures in harsh environments where light-absorbing gases and scattering particles exist and optical components can be contaminated.

Effects on CO2 and NOx Emissions at Real Driving Condition in the Passenger Car using Gasoline Fuel with Various Engine Displacements (휘발유 승용자동차의 엔진 배기량이 실도로 주행시 이산화탄소 및 질소산화물 배출에 미치는 영향)

  • Lee, Jongtae;Kim, Hyung Jun;Lim, Yun Sung;Yun, Chang Wan;Keel, Ji Hoon;Hong, You Deug
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.122-127
    • /
    • 2018
  • Recently, registrated passenger cars have increased and were close about seventy million at the end 2017 year in Korea. Among the passenger car using gasoline fuel make up forty six percentage of total registrated vehicles. In this study, investigation on real driving emission characteristics in the passenger car using gasoline fuel with various engine displacements were carried out. The real driving emission characteristics were measured and analyzed by using PEMS (Portable Emission Measurement System). PEMS was composed of gas analyzer, emission flow meter and sample conditioning system et al. Also, test six vehicles were selected to the gasoline passenger car with engine displacement from 1.6L to 3.7L. Two test routes with engine start of cold and hot conditions were applied to analyze the emission characteristics of RDE, respectively. The results show that the $CO_2$ emission have a increasing trend as the engine displacement and vehicle weight. Also, it is guessed that the $CO_2$ emission and vehicle weight were more correlated than the engine displacements. On the other hand, NOx emissions of RDE have not increasing or decreasing tendency according engine displacements or vehicle weight because the activation of three-way catalyst in the gasoline vehicles.

Investigation of Droplet Growth and Heat Transfer Characteristics during Dropwise Condensation on Hydrophobic Copper Surface (소수성 구리 표면에서의 액적 응축에 관한 액적 성장 및 열전달 특성 연구)

  • Lee, Hyung Ju;Jeong, Chan Ho;Kim, Dae Yun;Moon, Joo Hyun;Lee, Jae Bin;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.149-153
    • /
    • 2018
  • The present study investigates the heat transfer characteristics of droplet growth during dropwise condensation on the hydrophobic copper surface. We use the copper specimen coated by the self-assembled layer and conduct the real-time measurement of droplet size and spatial distribution of condensates during condensation with the use of the K2 lens (long distance microscope lens) and CMOS camera. The temperatures are measured by three RTDs (resistance temperature detectors) that are located through the holes made in the specimen. The surface temperature is estimated by the measured temperatures with the use of the one-dimensional conduction equation. It is observed that the droplets on the surface are growing up and merging, causing larger droplets. The experimental results show that there are three distinct regimes; in the first regime, individual small droplets are created on the surface in the early stage of condensation, and they are getting larger owing to direct condensation and coalescence with other droplets. In the second and third regimes, the coalescence occurs mainly, and the droplets are detached from the surface. Also, the fall-off time becomes faster as the surface wettability decreases. In particular, the heat transfer coefficient increases substantially with the decrease in wettability because of faster removal of droplets on the surfaces for lower wettability.

Study on the Atomization Characteristics of a Counter-swirling Two-phase Atomizer with Variations of Swirl angle (역선회 이류체 미립화기의 선회각 변화에 따른 미립화 특성연구)

  • Kim, N.H.;Lee, S.G.;Ha, M.H.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.125-130
    • /
    • 2001
  • Experimental and analytical researches have been conducted on the twin-fluid atomizers for better droplet breakup during the past decades. But, the studies on the disintegration mechanism still present a great challenge to understand the drop behavior and breakup structure. In an effort to describe the aerodynamic behavior of the sprays issuing from the internal mixing counter-swirling nozzle, the spatial distribution of axial (U) radial (V) and tangential (W) components of droplet velocities are investigated across the radial distance at several axial locations of Z=30, 50, 80, 120 and 170mm, respectively. Experiments were conducted for the liquid flow rates which was kept constant at 7.95 g/s and the air injection pressures were varied from 20 kPa to 140 kPa. Counter-swirling internal mixing nozzles manufactured at angles of $15^{\circ},\;30^{\circ},\;45^{\circ}$ and $60^{\circ}$ the central axis with axi-symmetric tangential-drilled holes was considered. The distributions of velocities and turbulence intensities are comparatively analyzed. PDPA is installed to specify spray flows, which have been conducted along the axial downstream distance from the nozzle exit. Ten thousand of sampling data was collected at each point with time limits of 30 second. 3-D automatic traversing system is used to control the exact measurement. It is observed that the sprays with all swirl angle have the maximum SMD for on air injection pressure of 20 kPa and 140 kPa with centerline, respectively. The nozzle with swirl angle of $60^{\circ}$ has vest performance.

  • PDF