• 제목/요약/키워드: Liquefied Natural Gas

검색결과 333건 처리시간 0.026초

국내(國內) 천연(天然)가스 유통비용평가방법(流通費用評價方法)에 관한 연구(硏究) (A STUDY ON THE EVALUTION METHOD OF THE GAS DISTRIBUTION COST IN KOREA)

  • 김태유;이세준;민철구
    • 자원ㆍ환경경제연구
    • /
    • 제1권1호
    • /
    • pp.1-25
    • /
    • 1991
  • The domestic liquefied natural gas project has been carried out as a national energy scheme since the late 1980's in Korea. The natural-gas supply for civilian demand is limited to the Kyung-In area. In addition, seven major city gas corporations which now participate in the project occupy the monopolistic service area. In this study, objective cost evaluation criteria for gas distribution and an improved proposal in the evaluation method are suggested. They will go forward in solving the problems to promote demand and prevent excess profit or deficit according to the physical characteristics of the monopolistic service area.

  • PDF

Coal Bed Methane을 사용한 다양한 응용 기술에 대한 고찰 (A Study on Various Application Technologies Using Coal Bed Methane)

  • 조원준;이제설;유혜진;이현찬;주우성;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.130-137
    • /
    • 2018
  • Now discusses the potential use and applications of coal bed methane (CBM) in various industries. One of the options for gas monetization is gas to power (GTP), sometimes called gas to wire (GTW). Electric power can be an intermediate product, such as in the case of mineral refining in which electricity is used to refine bauxite into aluminum; or it can be an end product that is distributed into a large utility power grid. For stranded gas, away from the regional markets, the integration of the ammonia and urea plants makes commercial sense. These new applications, if established, could lead to a surge in demand for methanol plants.

분자체를 이용한 LNG 액화 플랜트 탈수 공정의 효율성 향상에 관한 연구 (Study on the Improvement of Efficiency in Dehydration Process of LNG Liquefaction Plant Using Molecular Sieve)

  • 박종화;유돈상;조대명
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.105-113
    • /
    • 2024
  • The natural gas dehydration process plays a central role in liquefying LNG. This study proposes two natural gas dehydration process systems applicable to liquefied natural gas (LNG) liquefaction plants, and compares and analyzes energy optimization measures through simulation. The fuel gas from feed stream (FFF) case, which requires additional equipment for gas circulation, disadvantages are design capacity and increased energy. On the other hand, the end flash gas (EFG) case has advantages such as low initial investment costs and no need for compressors, but has downsides such as increased power energy and the use of gas with different components. According to the process simulation results, the required energy is 33.22 MW for the FFF case and 32.86 MW for the EFG case, confirming 1.1% energy savings per unit time in the EFG case. Therefore, in terms of design pressure, capacity, device configuration, and required energy, the EFG case is relatively advantageous. However, further research is needed on the impact of changes in the composition of regenerated gas on the liquefaction process and the fuel gas system.

상용 공정시뮬레이션 프로그램을 이용한 부유식 LNG 발전설비의 BOG 회수시스템 공정모사 (Process Simulation of the BOG Re-Liquefaction system for a Floating LNG Power Plant using Commercial Process Simulation Program)

  • 서주완;유승열;이재철;김영훈;이순섭
    • 해양환경안전학회지
    • /
    • 제26권6호
    • /
    • pp.732-741
    • /
    • 2020
  • 최근 환경규제가 강화됨에 따라 액화천연가스(Liquefied Natural Gas)를 이용하여 전력을 생산해내는 신규발전설비인 부유식 LNG 발전설비(floating LNG power plant)가 개발되고 있다. 부유식 LNG 발전설비는 운용 시 증발가스가 발생하고 이를 제거하거나 회수할 수 있는 시스템의 설계가 필요하다. 그러나 해양플랜트는 해상요건에 따라 설계가 상이하고, 부유식 LNG 발전설비의 설계 전 시행착오를 줄이기 위해 지속적으로 수정이 가능한 BOG 회수시스템 공정모사 모델이 필요하다. 따라서 본 연구에서는 상용공정시뮬레이션 프로그램을 통해 부유식 LNG 발전설비에 적합한 모델을 모델링하고자 냉매사용 유무에 따라 서로 다른 BOG(Boil-Off Gas) 회수시스템을 모델링하여 BOG의 회수율과 액화점을 비교 및 분석하였으며, 그 결과 질소냉매를 사용한 BOG 회수시스템 모델을 부유식 LNG 발전설비용 BOG 회수시스템 모델로 제안하고자 한다.

LNG선의 BOR평가를 위한 비정상상태 열전달 해석 (LNG Boil-Off Rate Estimation for LNG Carrier by Unsteady Heat Transfer Analysis)

  • 조진래;박희찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.166-171
    • /
    • 2008
  • LNG carrier is a special-purpose vessel to transport natural gas (NG) from the place of origin to each consuming country. To increase the capacity of canying LNG carrier, the natural gas is conveyed as a state of liquid called LNG (Liquefied Natural Gas) during a voyage because the total volume of NG is surprisingly reduced when it is cooled down to $-162^{\circ}C$. That is why the design of insulation of the carriers is important to protect LNG from the external heat invasion, and it has been a great challenging subject for several decades in the shipbuilding industry. For this ultimate goal, the boil-off rate (BOR) needs to be accurately estimated during a voyage. Therefore, the goal of this study is to propose a numerical method for estimating the BOR of LNG for given insulation containment subject to external temperature conditions during voyage.

  • PDF

고압 LNG 펌프의 이상 진동 진단 (Abnormal Vibration Diagnosis of High Pressure LNG Pump)

  • 김학은;최병근
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.45-49
    • /
    • 2005
  • Liquefied natural gas takes up six hundredths of the volume of natural gas, which makes storage and transportation much easier. To send out natural gas via a pipeline network across the nation, high-pressure LNG pumps supply highly compressed LNG to high-pressure vaporization facilities. The Number of high-pressure LNG pumps determined the send-out amount in LNG receiving terminal. So it is main equipment at LNG production process and should be maintained on best conditions. In this paper, to find out the cause of high beat vibration at cryogenic pumps, vibration and motor current signal analysis have been performed. High vibration of cryogenic pumps could be reduced due to the modification of motor rotor.

  • PDF

고압 LNG 펌프의 진동 진단 (Vibration Diagnosis of High Pressure LNG Pump)

  • 최병근;김학은;최창림;이재명;방상수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.776-779
    • /
    • 2005
  • Liquefied Natural Gas takes up six hundredths of the volume of natural gas, which makes storage and transportation much easier. To send out natural gas via a pipeline network across the nation, high pressure LNG pumps supply highly compressed LNG to high-pressure vaporization facilities. The Number of high Pressure LNG pumps determined the send out amount in LNG receiving terminal. So it is main equipment at LNG production process and should be maintained on best conditions. In this paper, to find out the cause of high beat vibration at cryogenic pumps, vibration and motor current analysis have been performed. And high beat vibration of cryogenic pumps could be reduced due to the modification of motor rotor.

  • PDF

Development of the computational program to evaluate heat leak on LNG tank of Natural Gas Vehicle

  • Minkasheva, Alena;Kim, Sung-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권7호
    • /
    • pp.771-781
    • /
    • 2006
  • Car acceleration or deceleration induce the surface slope of liquid fuel in the LNG tank. Slope changes the surface area wetted by liquid fuel in the tank and consequently heat leak to the tank. The Fortran program, 'Pro-Heatleak', is developed to evaluate heat leak on LNG tank. The verification test proves the high accuracy of the developed program. The difference between MathCad and computational results is less than 0.07 %. Computational analyses of heat leak are carried out for 10 gallons and 20 gallons of fuel vapor in the tank. With the increasing of fuel vapor volume by 10 percent the wetted surface area and heat leak respectively decrease by 13 percent. The difference between maximum and minimum heat leak is about 10 percent for both 10 gallons and 20 gallons of fuel vapor in the tank.

Damping Effect of Reinforced Polyurethane Foam under Various Temperatures

  • Lee, Tak-Kee;Kim, Myung-Hyun;Rim, Chae-Whan;Chun, Min-Sung;Suh, Yong-Suk
    • International Journal of Ocean System Engineering
    • /
    • 제1권4호
    • /
    • pp.230-235
    • /
    • 2011
  • Reinforced polyurethane foam (RPUF) is one of the important materials of Mark III type insulation systems used in liquefied natural gas (LNG) cargo containment systems. However, RPUF is the most difficult material to use with regard to its safety assessment, because there is little public and reliable data on its mechanical properties, and even some public data show relatively large differences. In this study, to investigate the structural response of the system under compressive loads such as sloshing action, time-dependent characteristics of RPUF were examined. A series of compressive load tests of the insulation system including RPUF under various temperature conditions was carried out using specimens with rectangular section. As a result, the relationship between deformation of RPUF and time is linear and dependent on the loading rate, so the concept of strain rate could be applied to the analysis of the insulation system. Also, we found that the spring constant tends to converge to a value as the loading rate increases and that the convergence level is dependent on temperature.

실해역 상태를 고려한 LNG 선박의 SLOSHING 해석 (Numerical Sloshing Analysis of LNG Carriers in Irregular Waves)

  • 박종진;김문성;김영복;하문근
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.38-43
    • /
    • 2005
  • The present study is concerned with the numerical analysis of the sloshing impact pressure of the Liquefied Natural Gas (LNG) carriers in rough sea. The reliable predictions of the both random tank motions in irregular waves and violent fluid flow in the LNG tanks are required for practical sloshing analysis procedure of LNG carriers. The three-dimensional numerical model adopting SOLA-VOF scheme is used to predict violent free surface movements of LNG tank in irregular motions. For accurate input motion of tank, a three-dimensional panel method program called SSMP (Samsung Ship Motion Program) is applied for seakeeping analysis. Comparison studies of sloshing analysis are carried out for No.2 tank of 138K and 205K LNG carriers to verify the safety of the LNG containment system of the proposed 205K large LNG carrier.

  • PDF