• Title/Summary/Keyword: Liquefied Hydrogen

Search Result 90, Processing Time 0.03 seconds

Separation of Electronic Grade Highly Pure Carbon Dioxide Using Combined Process of Membrane, LNG Cold Heat Assisted Cryogenic Distillation (분리막 공정과 LNG 냉열 및 심냉 증류를 이용한 전자급 고순도 이산화탄소의 분리)

  • YOUNGSOO KO;KYUNGRYONG JANG;JUNGHOON KIM;YOUNGJOO JO;JUNGHO CHO
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.1
    • /
    • pp.90-96
    • /
    • 2024
  • In this paper, a new technology to obtain electronic grade, highly pure carbon dioxide by using membrane and liquefied natural gas (LNG) cold heat assisted cryogenic distillation has been proposed. PRO/II with PROVISION release 2023.1 from AVEVA company was used, and Peng-Robinson equation of the state model with Twu's alpha function to predict pure component vapor pressure versus temperature more accurately was selected for the modeling of the membrane and cryogenic distillation process. Advantage of using membrane separation instead of selecting absorber-stripper configuration for the concentration of carbon dioxide was the reduction of carbon dioxide capture cost.

Numerical Study of Heat Flux and BOG in C-Type Liquefied Hydrogen Tank under Sloshing Excitation at the Saturated State (포화상태에 놓인 C-Type 액체수소 탱크의 슬로싱이 열 유속과 BOG에 미치는 변화의 수치적 분석)

  • Lee, Jin-Ho;Hwang, Se-Yun;Lee, Sung-Je;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.299-308
    • /
    • 2022
  • This study was conducted to predict the tendency for heat exchange and boil-off gas (BOG) in a liquefied hydrogen tank under sloshing excitation. First, athe fluid domain excited by sloshing was modeled using a multiphase-thermal flow domain in which liquid hydrogen and hydrogen gas are in the saturated state. Both the the volume of fluid (VOF) and Eulerian-based multi-phase flow methods were applied to validate the accuracy of the pressure prediction. Second, it was indirectly shown that the fluid velocity prediction could be accurate by comparing the free surface and impact pressure from the computational fluid dynamics with those from the experimental results. Thereafter, the heat ingress from the external convective heat flux was reflected on the outer surfaces of the hydrogen tank. Eulerian-based multiphase-heat flow analysis was performed for a two-dimensional Type-C cylindrical hydrogen tank under rotational sloshing motion, and an inflation technique was applied to transform the fluid domain into a computational grid model. The heat exchange and heat flux in the hydrogen liquid-gas mixture were calculated throughout the analysis,, whereas the mass transfer and vaporization models were excluded to account for the pure heat exchange between the liquid and gas in the saturated state. In addition, forced convective heat transfer by sloshing on the inner wall of the tank was not reflected so that the heat exchange in the multiphase flow of liquid and gas could only be considered. Finally, the effect of sloshing on the amount of heat exchange between liquid and gas hydrogen was discussed. Considering the heat ingress into liquid hydrogen according to the presence/absence of a sloshing excitation, the amount of heat flux and BOG were discussed for each filling ratio.

Performance experiment of a hydrogen liquefaction equipment by direct cooling (직접냉각에 의한 수소액화장치의 성능실험)

  • Baik, J.H.;Kang, B.H.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.284-291
    • /
    • 1997
  • A hydrogen liquefaction equipment by direct cooling has been designed and built at KIST. Cool-down characteristics and liquefaction performance of the equipment have been investigated. The hydrogen liquefaction equipment consists of a GM refrigerator, a liquefaction velssel, a radiation shield and a cryostat. It is found that the hydrogen starts to be liquefied in the liquefaction vessel after 40~50 minutes of cool-down from the gas state of 270K. The effect of natural convection phenomena of charged gas in liquefaction vessel on the cool-down characteristics is evaluated by comparing with those in vacuum of liquefaction vessel. It is seen that the cool-down time of a liquefaction vessel is substantially increased in vacuum environment of liquefaction vessel. The experiments have been performed for 1~5 atm of hydrogen pressure to investigate the influence of hydrogen pressure on the liquefaction rate and figure of merit(FOM). It is found that both liquefaction rate and FOM are increased as the charged hydrogen pressure is increased.

  • PDF

A Study for Key Points of PSM to Guarantee the Safety of Liqufied Hydrogen Storage Tank (액화수소 저장탱크 안전성 확보를 위한 PSM 중점사항에 관한 연구)

  • Myoung Sun Wu;Chang Jun Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.74-79
    • /
    • 2023
  • As the demand for hydrogen increases, the facilities for storing hydrogen has been important, and a few laws for hydrogen facilities should be complied. According to the Occupational Safety and Health Act in Korea, in case liquid hydrogen with a storage capacity of 5 tons or more is handled, a Process Safety Management (PSM) system should be complied. However, there are some standards which are not proper for flammable low-temperature liquefied substances on the current Occupational Safety and Health Act. In this study, 7 key points in process safey information and safety operation procedures among PSM components are suggested and how these key points should be improved is derived based on scientific analysis.

Thermodynamic Analysis of Hydrogen Lquefaction Systems Using Gifford-McMahon Cryocooler

  • Chang, Ho-Myung;Park, Dae-Jong;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.39-50
    • /
    • 2000
  • Thermodynamic cycle analysis is presented to estimate the maximum liquefaction rate of hydrogen for various systems using a Gifford-McMahon(GM) cryocooler. Since the present authors` previous experiments showed that the gaseous hydrogen was liquefied approximately at the rate of 5.1 mg/s from the direct contact with a commercial two-stage GM refrigerator, this study has been proposed to predict how much the liquefaction rate can be increased in different configurations using the GM cooler and with improved heat exchangers. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the Linde-Hampson(L-H) system precooled by single-stage GM, the direct-contact system with two-stage GM, the L-H system precooled by two-stage GM, and the direct-contact system with helium GM-JT (Joule-Thomson). The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, even though the highly effective heat exchangers may be employed. It is concluded that the liquefaction rate is limited mainly because of the cooling capacity of the commercially available GM cryocoolers and a practical scale of hydrogen liquefaction is possible only if the GM cooler has a greater capacity at 70-100 K.

  • PDF

Enhancement of the energy efficiency of hydrogen SOFC system by integrated cold energy utilization and waste heat recovery method

  • Nguyen Quoc Huy;Duong Phan Anh;Ryu Bo Rim;Lee Jin Uk;Kang Ho Keun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.160-161
    • /
    • 2022
  • Hydrogen is bridge fuel with high energy content and environmentally friendly to satisfy the stringent IMO regulation relating to greenhouse gas (GHG) emissions. There is growing interest in hydrogen in numerous nations and regions illustrated by an extensive range of research and development in technology. Regarding maritime applications, researchers have recognized the utilization of hydrogen as a fuel for fuel cells, a device that converts the chemical energy of the fuel to electrical energy. Solid oxide fuel cell (SOFC), with high working temperature, is easy to combine with the waste heat recovery cycles/devices to increase output power and thermodynamic performances as well. Furthermore, the cold energy from liquid hydrogen supplied to SOFC can also be used to generate more power. In this study, we proposed a SOFC integrated system with the idea of combining the waste heat recovery from the SOFC exhaust stream and cold energy utilization from LH2. The designation is aimed to target small-scale vessel which uses electric propulsion for short distances voyage.

  • PDF

Characteristic analysis and condenser design of gas helium circulation system for zero-boil-off storage tank

  • Jangdon Kim;Youngjun Choi;Keuntae Lee;Jiho Park;Dongmin Kim;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.65-69
    • /
    • 2023
  • Hydrogen is an eco-friendly energy source and is being actively researched in various fields around the world, including mobility and aerospace. In order to effectively utilize hydrogen energy, it should be used in a liquid state with high energy storage density, but when hydrogen is stored in a liquid state, BOG (boil-off gas) is generated due to the temperature difference with the atmosphere. This should be re-condensed when considering storage efficiency and economy. In particular, large-capacity liquid hydrogen storage tank is required a gaseous helium circulation cooling system that cools by circulating cryogenic refrigerant due to the increase in heat intrusion from external air as the heat transfer area increases and the wide distribution of the gas layer inside the tank. In order to effectively apply the system, thermo-hydraulic analysis through process analysis is required. In this study, the condenser design and system characteristics of a gaseous helium circulation cooling system for BOG recondensation of a liquefied hydrogen storage tank were compared.

Disk Shape Design of Liquid Hydrogen Needle Valve with Various Inherent Flow Characteristics (다양한 고유유량 특성을 갖는 액체수소용 니들밸브의 디스크 형상 설계)

  • NAGYUMI HWANG;HYOLIM KANG;JUNGHO KANG;SEUNGHO HAN
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.363-369
    • /
    • 2024
  • Needle valves are instrumentation devices with quick-opening inherent flow characteristics, used in pipelines requiring rapid flow supply immediately upon opening the flow path. For needle valves applied in liquefied hydrogen plants operating in cryogenic environments, it is necessary from the initial design stage to have various inherent flow characteristics in addition to quick-opening, depending on the intended usage. In this study, the inherent flow characteristics of a 1/2'' liquid hydrogen needle valve were evaluated through computational fluid dynamics analysis. Disk shapes exhibiting various inherent flow characteristics were proposed by deriving the flow coefficient (Cv) according to changes in disk shapes. Among the disk shapes that directly affect the Cv, the disk length and slope angle were selected, and case studies were conducted with nine parameter combinations. From the results of the normalized Cv regarding to opening rates, disk lengths and slope angles exhibiting quick-opening, equal-percentage, and linear inherent flow characteristics were determined.

A Study on V-I Characteristics of Hydrogen-Oxygen Gas Generator

  • Yang Seung-Heun;Kang Byoung-Hee;Gho Jae-Soek;Mok Hyung-Soo;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.109-112
    • /
    • 2001
  • Water-Electrolyzed gas is a mixed gas of the constant volume ratio 2:1 of Hydrogen and Oxygen gained from electrolyzed water, and it has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG (Liquefied Petroleum Gas) used for existing gas welding equipment. So studies of Water-Electrolyzed gas are activity in progress nowaday, and commercially used as a source of thermal energy for gas welding in the industry. The object of this paper is getting a V-I characteristic of Hydrogen-Oxygen Gas Generator using DC source. First, chemical analysis of electrolysis is conducted and the relation of electrical energy and then chemical energy is investigated through the faraday's laws.

  • PDF

Operating Conditions of Hydrogen Liquefaction Systems using Two-Stage GM Refrigerator (2단 GM냉동기를 이용한 수소액화 시스템의 운전조건)

  • 박대종;장호명;강병하
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.194-197
    • /
    • 1999
  • Thermodynamic cycle analysis has been performed to maximize the liquid amount for two hydrogen liquefaction systems using two-stage GM(Gifford-McMahon) refrigerator. the optimal operating conditions have been analytically sought with real properties of normal hydrogen for the two-stage GM direct contact system and the two-stage GM precooled L-H (Linde-Hampson) system. In the precooled system, there existed optimal values for compressed mass flow and compressed pressure to maximize the liquefied mass. It was recommended to use a cryocooler, which had a large precooling capacity between 70 and 100K.

  • PDF