• Title/Summary/Keyword: Liquefaction behavior

Search Result 107, Processing Time 0.021 seconds

Variation of Undrained Shear Behavior with Consolidation Stress Ratio of Nakdong River Sand (압밀응력비에 따른 낙동강모래의 비배수전단거통 특성)

  • 김영수;정성관;송준혁;정동길
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.83-93
    • /
    • 2003
  • This research, in order to study the effects of initial shear stress of anisotropically consolidated sand that has 0.558% fines, performed several undrained static and dynamic triaxial test. To simulate the real field conditions, loose and dense samples were prepared. Besides, the cyclic shear strength of Nakdong River sand under various combinations of initial static shear stress, stress path, pore water pressure and residual strength relationship was studied. By using Bolton's theory, peak internal friction angle at failure which has considerable effects on the relative density and mean effective stress was determined. In p'- q diagram, the phase transformation line moves closer to the failure line as the specimen's initial anistropical consolidation stress increases. Loose sands were more affected than dense sands. The increase of consolidation stress ratio from 1.4 to 1.8 had an effect on liquefaction resistance strength resulting from the increase of relativity density, and showed similar CSR values in dense specimen condition.

Cyclic Shear Strength of Anisotropically Consolidated Snnd (비등방 압밀 모래의 반복 전단강도)

  • Kim, Byung-Tak;Kim, Young-Su;Seo, In-Shik;Jeong, Dong-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.73-85
    • /
    • 2002
  • This paper is focused on studying the undrained cyclic triaxial behavior of saturated Nak-dong River sand, using anisotropically consolidated specimens. A test of isotropically consolidated specimens was performed to compare the results of the anisotropically consolidated specimens. The cyclic shear stre3ngth of the sand under various combinations of initial static shear stress and relative density was considered. Failure was defined as a 5% double amplitude cyclic strain and a 5% residual axial strain for both reversal stress and no reversal stress conditions. Using this definition, the cyclic strength of the anisotropically consolidated specimens was affected by the initial static shear stress. For anisotropically consolidated Nak-dong River dense sand, the cyclic strength is greater than that of Toyolura silica sand but is smaller than that of Dogs Bay carbonate sand. By comparing the experimental and predictecl results, it was possible to predict the residual pore pressure of Nak-dong River sand using Hyodo's model with initial static shear stress subjected cyclic loading.

Finite Element Modeling of Geogrid-encased Stone Columns in Soft Clay (지오그리드 보강 쇄석 말뚝 공법의 유한요소해석 모델링)

  • Yoo, Chung-Sik;Song, Ah-Ran;Lee, Dae-Young;Kim, Sun-Bin;Park, Si-Sam
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 2007
  • This study presents a modeling approach for geogrid-encased stone column(GESC) method which is widely used in Europe as an alternative to conventional pile foundations. Several benefits of using the stone column method include sound performance, low cost, expediency of construction, and liquefaction resistance, among others. Recently, geosynthetic-encased stone column approach has been developed to improve load carrying capacity through increasing confinement effect. The aim of this research is to establish a systematic approach for modeling of GESC and to form a database for the fundamentals of GESC. This paper presents details of 3D modeling of GESC together with the general behavior of GESC.

  • PDF

Comparison of Design Concepts for Four Different Entrained-Bed Coal Gasifier Types with CFD Analysis (CFD 해석을 통한 4종의 건식 분류층 석탄가스화기 설계개념 비교)

  • Yun, Yongseung;Ju, Jisun;Lee, Seung Jong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.566-574
    • /
    • 2011
  • Coal gasifier is a key component for achieving high efficiency in integrated gasification combined cycle and indirect coal liquefaction. Although there have been several successful coal gasifiers that were commercially proven, many different design configurations are still possible for a simple and reliable gasifier operation. Four different gasifier design concepts of dry-feeding were compared in terms of residence time, exit syngas temperature and syngas composition. First, cold-flow simulation was applied to pre-select the configuration concepts, and the hot-flow simulation including chemical reactions was performed to compare the concepts at more actual gasifier operating conditions. There are many limitations in applying CFD method in gasifier design, particularly in estimating slag behavior and slag-tap design. However, the CFD analysis proved to be useful in comparing the widely different gasifier design concepts as a pre-selection tool.

Unidirectional cyclic shearing of sands: Evaluation of three different constitutive models

  • Oscar H. Moreno-Torres;Cristhian Mendoza-Bolanos;Andres Salas-Montoya
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.449-464
    • /
    • 2023
  • Advanced nonlinear effective stress constitutive models are started to be frequently used in one-dimensional (1D) and two-dimensional (2D) site response analysis for assessment of porewater generation and liquefaction potential in soft soil deposits. The emphasis of this research is on the assessment of the implementation of this category of models at the element stage. Initially, the performance of a coupled porewater pressure (PWP) and constitutive models were evaluated employing a catalogue of 40 unidirectional cyclic simple shear tests with a variety of relative densities between 35% and 80% and effective vertical stresses between 40 and 80 kPa. The authors evaluated three coupled constitutive models (PDMY02, PM4SAND and PDMY03) using cyclic direct simple shear tests and for decide input parameters used in the model, procedures are recommended. The ability of the coupled model to capture dilation as strength is valuable because the studied models reasonably capture the cyclic performance noted in the experiments and should be utilized to conduct effective stress-based 1D and 2D site response analysis. Sandy soils may become softer and liquefy during earthquakes as a result of pore-water pressure (PWP) development, which may have an impact on seismic design and site response. The tested constitutive models are mathematically coupled with a cyclic strain-based PWP generation model and can capture small-strain stiffness and large-strain shear strength. Results show that there are minor discrepancies between measured and computed excess PWP ratios, indicating that the tested constitutive models provide reasonable estimations of PWP increase during cyclic shear (ru) and the banana shape is reproduced in a proper way indicating that dilation and shear- strain behavior is well captured by the models.

Proposition of Improved Semi-Analytical Relationship considering Response Characteristics of Buried Pipeline (지중매설관로의 거동특성을 반영한 개선된 해석적 관계식의 제안)

  • 김태욱;임윤묵;김문겸
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.37-46
    • /
    • 2003
  • Response analysis of buried pipeline subjected to permanent ground deformation(PGD) due to liquefaction is mainly executed by use of numerical analysis or semi-analytical relationship, Especially for the semi-analytical relationship considering transverse PGD, it has somewhat limited applicability : since it has different formula according to the width of PGD and does not reflect various patterns of PGD which is caused by the decrease of soil stiffness, Therefore, in this study, the applicability of existing analytical relationship is closely investigated through the comparison of FEM results at first. And then, based on meaningful contemplation, improved analytical relationship is proposed. The proposed one models the system behavior of buried pipeline as the combination of cable and beam, and thus it is applicable to arbitrary width of PGD, Moreover, it does reflect various patterns of PGD by introducing interaction pattern coefficient. Through the comparison of numerical results using the FEM and the proposed analytical relationship, rational applicability is objectively verified and noticeable considerations are discussed, Moreover, analyses considering the change of PGD magnitude and patterns are performed.

A Case Study on Earthquake-induced Deformation of Quay Wall and Backfill in Pohang by 2D-Effective Stress Analysis (2차원 유효응력 해석에 의한 지진시 포항 안벽구조물의 변형 사례 분석)

  • Kim, Seungjong;Hwang, Woong-Ki;Kim, Tae-Hyung;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.15-27
    • /
    • 2019
  • The purpose of this study is to investigate the mechanism about damages occurring at quay wall and backfill in Youngilman Port during Pohang earthquake (M5.4) on November 15, 2017. In the field investigation, the horizontal displacement of the caisson occurred between 5 cm and 15 cm, and the settlement at backfill occurred higher than 10 cm. 2D-effective Stress Analysis was performed to clarify the mechanism for the damage. The input earthquake motion used acceleration ($3.25m/s^2$) measured at bedrock of Pohang habor. Based on a numerical analysis, it was found that the effective stress decreased due to the increase of excess pore pressure in the backfill ground and the horizontal displacement of the caisson occurred by about 14 cm, and the settlement occurred by about 3 cm. In backfill, the settlements occurred between 6 cm and 9 cm. This is similar to field investigation results. Also, it was found that the backfill soil was close to the Mohr-Coulomb failure line due to the cyclic loading from the effective stress path and the stress-strain behavior. It may be related to decreasing of bearing capacity induced by the reduction of effective stress caused by the increase of the excess pore water pressure.