DOI QR코드

DOI QR Code

Comparison of Design Concepts for Four Different Entrained-Bed Coal Gasifier Types with CFD Analysis

CFD 해석을 통한 4종의 건식 분류층 석탄가스화기 설계개념 비교

  • Yun, Yongseung (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Ju, Jisun (Power Generation Lab., KEPCO Research Institute) ;
  • Lee, Seung Jong (Plant Engineering Center, Institute for Advanced Engineering)
  • 윤용승 (고등기술연구원 플랜트엔지니어링센터) ;
  • 주지선 (한전 전력연구원 수화력발전연구소) ;
  • 이승종 (고등기술연구원 플랜트엔지니어링센터)
  • Received : 2011.08.21
  • Accepted : 2011.09.27
  • Published : 2011.10.10

Abstract

Coal gasifier is a key component for achieving high efficiency in integrated gasification combined cycle and indirect coal liquefaction. Although there have been several successful coal gasifiers that were commercially proven, many different design configurations are still possible for a simple and reliable gasifier operation. Four different gasifier design concepts of dry-feeding were compared in terms of residence time, exit syngas temperature and syngas composition. First, cold-flow simulation was applied to pre-select the configuration concepts, and the hot-flow simulation including chemical reactions was performed to compare the concepts at more actual gasifier operating conditions. There are many limitations in applying CFD method in gasifier design, particularly in estimating slag behavior and slag-tap design. However, the CFD analysis proved to be useful in comparing the widely different gasifier design concepts as a pre-selection tool.

석탄가스화기는 석탄가스화복합발전과 석탄간접액화 공정에서 고효율을 얻기 위한 중요한 설비 중 하나이다. 현재 여러 종류의 석탄가스화기가 성공적으로 사용되고 있지만, 간단하면서도 신뢰도를 높일 수 있는 다양한 설계 변경이 가능하다. 건식 분류층 가스화기 4종류의 형태를 제시하고 이들을 체류시간, 가스화기 출구 합성가스의 온도, 합성가스 조성을 중점으로 비교하였다. 설계개념이 적정한지를 우선 파악하고자 반응을 배제한(cold-flow) CFD 해석을 먼저 수행하였고, 실제 가스화기 조건을 반영한 화학반응이 고려된(hot-flow) 해석을 수행하여 비교하였다. 가스화기 설계에 CFD를 적용하는 데는 슬랙의 거동과 슬랙탭 설계 등 측면에서 제한적이기는 하지만, 다양한 설계개념 중에서 가능성이 높은 가스화기 형태의 범위를 좁히는 데 매우 유용하게 사용될 수 있다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KEPTEP)

References

  1. C. Higman and M. Burgt, Gasification, 85, Elsevier, Amsterdam (2003).
  2. Y. Yun, KISTEP Green-tech Research, 4, 89 (2010).
  3. N. Holt, Gasification Users Association Annual Report, EPRI, Palo Alto, USA (2010).
  4. N. Berkowitz, An Introduction to Coal Technology, 253, Academic Press, New York (1979).
  5. K. Aasberg-Petersen, T. Christensen, I. Dybkjoer, J. Sehested, M. Ostberg, R. Coertzen, M. Keyser, and A. Steynberg, Fisher-Tropsch Technology, ed. A. Steynberg and M. Dry, 152, 363, Elsevier, Amsterdam (2004).
  6. Y. Yun and Y. D. Yoo, Korean J. of Chem. Eng., 18, 679 (2001). https://doi.org/10.1007/BF02706386
  7. Y. Yun and Y. D. Yoo, J. Ind. Eng. Chem., 11, 228 (2005).
  8. Y. Yun and S. W. Chung, Korean J. of Chem. Eng., 24, 628 (2007). https://doi.org/10.1007/s11814-007-0015-9
  9. Y. Yun, Y. D. Yoo, and S. W. Chung, Fuel Processing Technology, b, 107 (2007).
  10. Y. Yun, S. J. Lee, and J. P. Hong, Korean J. of Chem. Eng., 28, 1188 (2011). https://doi.org/10.1007/s11814-010-0499-6
  11. P. Schoen, Ph.D. Dissertation, Delft University of Technology, Amsterdam, Netherland (1993).
  12. Y. Yun, G. B. Lee, and S. W. Chung, J. Korean Ind. Eng. Chem., 14, 511 (2003).
  13. C. Chen, M. Horio, and T. Kojima, Fuel, 80, 1513 (2001). https://doi.org/10.1016/S0016-2361(01)00013-8