• 제목/요약/키워드: Liposomes

검색결과 337건 처리시간 0.026초

니오솜을 이용한 $[^{3}H]$아시클로버의 경피투과 (Transdermal Permeation of $[{^3}H]Acyclovir$ Using Niosome)

  • 박새해;이순영;용철순
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권1호
    • /
    • pp.43-50
    • /
    • 1998
  • Niosomes are vesicles formed from synthetic non-ionic surfactants, offering an alternative to chemically unstable and expensive liposomes as a drug carrier. Non-ionic surfactant and cholesterol mixture film leads to the formation of vesicular system by hydration with sonication method. The formation of niosome was ascertained by negative staining of TEM. The entrapment efficiency of niosomal suspension was gradually increased with increasing the ratio of cholesterol to surfactant. It was found that the niosome with 6 : 4 (polyoxyethylene 2-cetyl ether: cholesterol) ratio was more stable than those with other ratios. The topical application of acyclovir(ACV) in the treatment of herpes simplex virus type 1(HSV-1) skin disease has a long history. There are an increasing number of reports, however, in which topical ACV therapy is not as effective as oral administration. Lack of efficacy with topical ACV has been hypothesized to reflect the inadequate delivery of drug to the skin. We investigated the permeation of niosome containing $[^{3}H]ACV$ in hairless mouse skin using Franz diffusion cell model. Permeation coefficient(P) of aqueous ACV was $6.7{\times}10^{-4}\;(cm/hr)$ and that of ACV in niosome was $23.4{\times}10^{-4}\;(cm/hr)$, suggesting about 3.5 times increase in the transdermal permeation.

  • PDF

진행된 암 동물모델에서의 리포좀 포집 PALA의 항암 치료 효과 (Therapeutic Potency of N-(Phosphonacetyl)-L-Aspartic Acid in Liposome in Established Tumor Bearing Mice)

  • 김진석
    • Journal of Pharmaceutical Investigation
    • /
    • 제30권2호
    • /
    • pp.127-131
    • /
    • 2000
  • Previously, we have reported an antitumor efficacy of liposomal N-(phosphon-acetyl)-L-aspartic acid (or PALA) in C-26 tumor bearing Balb/c mice, where PALA in liposome was administered one day after tumor inoculation. In this report, we have investigated the therapeutic potency of liposomal formulation of PALA, which was administered eight days after tumor inoculation in the same C-26 tumor bearing mice. The C-26 murine colon tumor inoculated mice were randomized for the in vivo therapy and the survival was measured after a single intraperitoneal injection of the drug. When the therapy was initiated eight days after tumor inoculation, DSPC-PALA at 150 mg/kg resulted in a significant increase in median survival time (MST) of 56% over the control group which received MES/HEPES buffer alone. However, none of the free PALA and DSPG-PALA liposome doses caused a statistically significant increase in MST over control group at the 95% confidence level. At 750 mg/kg dose, free PALA caused a marginally significant improvement in MST by 34%, but both 375 mg/kg and 150 mg/kg doses of free PALA caused only a 2% and a 4% increase in MST, respectively. These results show that PALA in neutrally charged liposome can exhibit considerably greater potency than free PALA in established C-26 tumor bearing mice.

  • PDF

Role of polyethylene glycol (PEG) linkers: trends in antibody conjugation and their pharmacokinetics

  • Kondapa Naidu Bobba;Abhinav Bhise;Subramani Rajkumar;Woonghee Lee;Jeongsoo Yoo
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.155-164
    • /
    • 2020
  • Polyethylene glycol (PEG) has been the most commonly used polymer for the past few decades in the field of biomedical applications due to its gold standard stealth effect. PEGylation of antibody-drug conjugates, liposomes, peptides, nanoparticles, and proteins is done to improve their pharmaceutical efficacy and pharmacokinetic properties. PEGylation of antibodies with various PEG linkers improves targeting ability by increasing the blood circulation time and thus enhances the biodistribution profiles. It also assists in minimizing the immediate capture by the reticuloendothelial system. In this review, we summarize the effect of PEG linkers in an antibody conjugation and their pharmacokinetics in the field of biomedical imaging.

Immunogenic characterization of AlPO4 adsorbed Td vaccine and liposome-mediated Td vaccine

  • Remees Shuhsadhe;Junise Vazhayil;Heyam Saad Ali;Hiba Orsud;Ahmed Elmontaser Omer Mergani
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권3호
    • /
    • pp.232-239
    • /
    • 2023
  • Purpose: The purpose of this study was to compare the antigenic potency and stability of tetanus and diphtheria (Td) vaccines when combined with aluminum phosphate (AlPO4) and liposome adjuvants. Materials and Methods: In vitro and in vivo analyses were conducted using the single radial immunodiffusion method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Td vaccines were prepared with AlPO4 adsorption and liposome-mediated delivery, and protein antigens were characterized using these methods. Results: The results revealed that the liposome-mediated Td vaccines exhibited higher immunogenicity compared to the AlPO4-adsorbed Td vaccines. Additionally, the liposome-mediated Td vaccines demonstrated higher stability as native antigens. Conclusion: This study highlights the importance of utilizing liposome adjuvants in vaccine development. The liposome-mediated Td vaccines showed enhanced immunogenicity and stability, making them a promising approach for improving vaccine efficacy. Understanding and optimizing adjuvant strategies can contribute to the development of effective vaccines against various diseases.

Photo-controlled gene expression by fluorescein-labeled antisense oligonucleotides in combination with visible light irradiation

  • Ito, Atsushi;Kaneko, Tadashi;Miyamoto, Yuka;Ishii, Keiichiro;Fujita, Hitoshi;Hayashi, Tomonori;Sasaki, Masako
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.451-453
    • /
    • 2002
  • A new concept of "photo" -antisense method has been evaluated, where the inhibition of gene expression by the conventional antisense method is enhanced by photochemical binding between antisense oligonucleotides conjugated with photo-reactive compound and target mRNA or DNA. Fluorescein labeled oligodeoxyribonucleotides (F-DNA) was delivered to cell nuclei in the encapsulated form in multilamellar lecithin liposomes with neutral charge. F-DNA was previously shown to photo-bind to the complementary stranded DNA, and the delivery system using neutral liposome to be effective in normal human keratinocytes. In the present study, we used human kidney cancer G401.2/6TG.1 cell line to be advantageous in reproducible experiments. p53 was adopted as a target gene since antisense sequence information has been accumulated. The nuclear localization ofF-DNA was identified by comparing the fluorescence ofF-DNA with that of Hoechst 33258 under fluorescence microscope. After 7hr incubation to accumulate p53 protein induced by UV -B, p53 protein was quantified by Western blot. After 2hrs from F-DNA application, about 30% of cell population incorporated F-DNA in their nuclei with some morphological change possibly due to liposomal toxicity. Irradiation of visible light longer than 400nm from solar simulator at this time enhanced the inhibitory action of antisense F-DNA. The present results suggest that photo-antisense method is promising to control gene expression in time and space dependent manner. Further improvement of F-DNA delivery to cancer cells in the stability and toxicity is in progress. progress.

  • PDF

면역보조제의 작용 및 개발 (A Current Research Insight into Function and Development of Adjuvants)

  • 손은수;손은화;표석능
    • IMMUNE NETWORK
    • /
    • 제4권3호
    • /
    • pp.131-142
    • /
    • 2004
  • In recent years, adjuvants have received much attention because of the development of purified subunit and synthetic vaccines which are poor immunogens and require adjuvants to evoke the immune response. Therefore, immunologic adjuvants have been developed and testing for most of this century. During the last years much progress has been made on development, isolation and chemical synthesis of alternative adjuvants such as derivatives of muramyl dipeptide, monophosphoryl lipid A, liposomes, QS-21, MF-59 and immunostimulating complexes (ISCOMS). Biodegradable polymer microspheres are being evaluated for targeting antigens on mucosal surfaces and for controlled release of vaccines with an aim to reduce the number of doses required for primary immunization. The most common adjuvants for human use today are aluminum hydroxide and aluminum phosphate. Calcium phosphate and oil emulsions have been also used in human vaccination. The biggest issue with the use of adjuvants for human vaccines is the toxicity and adverse side effects of most of the adjuvant formulations. Other problems with the development of adjuvants include restricted adjuvanticity of certain formulations to a few antigens, use of aluminum adjuvants as reference adjuvant preparations under suboptimal conditions, non-availability of reliable animal models, use of non-standard assays and biological differences between animal models and humans leading to the failure of promising formulations to show adjuvanticity in clinical trials. The availability of hundreds of different adjuvants has prompted a need for identifying rational standards for selection of adjuvant formulations based on safety and sound immunological principles for human vaccines. The aim of the present review is to put the recent findings into a broader perspective to facilitate the application of these adjuvants in general and experimental vaccinology.

Potentiation of Th1-Type Immune Responses to Mycobacterium tuberculosis Antigens in Mice by Cationic Liposomes Combined with De-O-Acylated Lipooligosaccharide

  • Ko, Ara;Wui, Seo Ri;Ryu, Ji In;Lee, Yeon Jeong;Hien, Do Thi Thu;Rhee, Inmoo;Shin, Sung Jae;Park, Shin Ae;Kim, Kwang Sung;Cho, Yang Je;Lee, Na Gyong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.136-144
    • /
    • 2018
  • Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. Bacillus Calmette-$Gu\acute{e}rin$ (BCG) vaccine is the only TB vaccine currently available, but it is not sufficiently effective in preventing active pulmonary TB or adult infection. With the purpose of developing an improved vaccine against TB that can overcome the limitations of the current BCG vaccine, we investigated whether adjuvant formulations containing de-O-acylated lipooligosaccharide (dLOS) are capable of enhancing the immunogenicity and protective efficacy of TB subunit vaccines. The results revealed that the dLOS/dimethyl dioctadecyl ammonium bromide (DDA) adjuvant formulation significantly increased both humoral and Th1-type cellular responses to TB subunit vaccine that are composed of three antigens, Ag85A, ESAT-6, and HspX. The adjuvanted TB vaccine also effectively induced the Th1-type response in a BCG-primed mouse model, suggesting a potential as a booster vaccine. Finally, the dLOS/DDA-adjuvanted TB vaccine showed protective efficacy against M. tuberculosis infection in vitro and in vivo. These data indicate that the dLOS/DDA adjuvant enhances the Th1-type immunity and protective efficacy of the TB subunit vaccine, suggesting that it would be a promising adjuvant candidate for the development of a booster vaccine.

Changes in Quality Characteristics of Pork Patties Containing Antioxidative Fish Skin Peptide or Fish Skin Peptide-loaded Nanoliposomes during Refrigerated Storage

  • Bai, Jing-Jing;Lee, Jung-Gyu;Lee, Sang-Yoon;Kim, Soojin;Choi, Mi-Jung;Cho, Youngjae
    • 한국축산식품학회지
    • /
    • 제37권5호
    • /
    • pp.752-763
    • /
    • 2017
  • Marine fish skin peptides (FSP) have been widely studied due to their antioxidant and antimicrobial properties. We aimed to use a natural antioxidant, FSP, to replacing synthetic preservatives in a pork patty model, which is safer for human body. Moreover, nano-liposome technology can be applied for masking the fishy smell and improving the stability of this peptide. Therefore, in this study, the effects of FSP and FSP-loaded liposomes (FSPL) on pork patty were evaluated through the tests of thiobarbituric acid reactive substances (TBARS), color, cooking loss, texture, volatile basic nitrogen (VBN), and the pH value, during 14 d of refrigerated ($4^{\circ}C$) storage. The results showed that all FSP-treated patties had lower TBARS values than control patties, which indicated an inhibitory effect of FSP on lipid oxidation. This effect in the patties depended on the FSP concentration. However, FSPL-treated patties showed significantly higher and undesirable TBARS values compared to the control, and this effect depended on the FSPL concentration. None of the physicochemical results showed remarkable changes except the pH and VBN values. Therefore, this study provides evidence that FSP has great potential to inhibit the lipid oxidation of pork patties and is capable of maintaining the quality and extending the shelf life. However, it is necessary to study the application of FSP treatments greater than 3% to improve the antioxidant effect on pork patties and search for other coating materials and technology to reduce the drawbacks of FSP.

Chemical Modification of Nucleic Acids toward Functional Nucleic Acid Systems

  • Venkatesan, Natarajan;Seo, Young-Jun;Bang, Eun-Kyoung;Park, Sun-Min;Lee, Yoon-Suk;Kim, Byeang-Hyean
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권5호
    • /
    • pp.613-630
    • /
    • 2006
  • Nucleic acids are virtually omnipresent; they exist in every living being. These macromolecules constitute the most important genetic storage material: the genes. Genes are conserved throughout the evolution of all living beings; they are transmitted from the parents to their offspring. Many interdisciplinary research groups are interested in modifying nucleic acids for use in a wider variety of applications. These modified oligonucleotides are used in many diverse fields, including diagnostics, detection, and therapeutics. In this account, we summarize our research efforts related to modified nucleic acid systems. First, we discuss our syntheses of modified oligonucleotides containing fluorescent tags for use as molecular probes (molecular beacons) to detect single-nucleotide polymorphisim (SNP) in nucleic acids and to distinguish between the B and Z forms of DNA. We also describe our research efforts into oligonucleotides functionalized with steroid derivatives to enhance their cell permeability, and the synthesis of several calix[4]arene-oligonucleotide conjugates possessing the ability to form defined triplexes. In addition, we have performed systematic studies to have an understanding about the functional groups necessary for a given nucleoside to behave as an organo or hydrogelator. The aggregation properties of a number of nucleoside-based phospholipids have been examined in different solvents; some of these derivatives are potential candidates for use as nucleoside-based liposomes. Finally, we also describe our research efforts toward the preparation of isoxazole- and isoxazoline-containing nucleoside derivatives and the determination of their antiviral activities.

Enhancement of immunomodulatory activity by liposome-encapsulated natural phosphodiester bond CpG-DNA in a human B cell line

  • Kim, Dong-Bum;Rhee, Jae-Won;Kwon, Sang-Hoon;Kim, Young-Eun;Choi, Soo-Young;Park, Jin-Seu;Lee, Young-Hee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • 제43권4호
    • /
    • pp.250-256
    • /
    • 2010
  • Natural phosphodiester bond CpG-DNA that contains immunomodulatory CpG motifs (PO-DNA) upregulates the expression of proinflammatory cytokines and induces an Ag-driven Th1 response in a CG sequence-dependent manner in mice. In humans, only phosphorothioate backbone-modified CpG-DNA (PS-DNA) and not PO-DNA has immunomodulatory activity. In this study, we found that liposome-encapsulated PO-DNA upregulated the expression of human $\beta$-defensin-2 (hBD-2) and major histocompatibility class II molecules (HLA-DRA) in a CG sequence-dependent and liposome- dependent manner in human B cells. Of the three different liposomes, DOTAP has the unique ability to enhance the immunomodulatory activity of PO-DNA. In contrast, HLA-DRA and hBD-2 promoter activation can be induced by liposome-encapsulated PS-DNA in a CG sequence-independent manner, depending on the CpG-DNA species. Our observations demonstrate that, when encapsulated with a proper liposome in the immune system, natural PO-DNA has the potential to be a useful therapy for the regulation of the innate immune response.