• Title/Summary/Keyword: Liposomes

Search Result 337, Processing Time 0.028 seconds

Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidin-derived antibacterial peptide

  • Lee, Ju-Yeon;Yang, Sung-Tae;Kim, Hyo-Jeong;Lee, Seung-Kyu;Jung, Hyun-Ho;Shin, Song-Yub;Kim, Jae-Il
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.586-592
    • /
    • 2009
  • The bactenecin is an antibacterial peptide with an intramolecular disulfide bond. We recently found that homodimeric bactenecin exhibits more potent antibacterial activity than the monomeric form and retains its activity at physiological conditions. Here we assess the difference in the modes of antibiotic action of homodimeric and monomeric bactenecins. Both monomeric and dimeric bactenecins almost completely killed both Staphylococcus aureus and E. coli within 10-30 min at concentrations of $8-16\;{\mu}M$. However, exposure to liposomes elicited an increase in the fluorescence quantum yield from a tryptophan-containing monomeric analog, while the homodimeric analog showed a significant reduction in fluorescence intensity. Moreover, unlike the monomer, the homodimer displayed apparent membrane-lytic activity enabling release of various sized dyes from liposomes, and rapidly and fully depolarized the S. aureus membrane. Together, our results suggest that homodimeric bactenecin forms pores in the bacterial membrane, while monomeric one penetrates through the membrane to target intracellular molecules/organelles.

Rapid Measurement of $NH_3$ and Weak Acid Permeation Through Liposomes and Renal Proximal Tubule Membranes

  • Bae, Hae-Rahn;Suh, Duck-Joon;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.203-214
    • /
    • 1994
  • Using the methods of stopped-flow and epifluorescence microscopy with entrapped fluorophore, membrane permeability of $NH_3$ and weak acids in liposomes, renal brush border (BBMV) and basolateral membrane vesicles (BLMV), and primary culture cells from renal proximal tubule was measured. Permeability coefficient (cm/sec) of $NH_3$ was $(2.9{\times}10^{-2}$ in phosphatidylcholine liposome $25^{\circ}C)$, $5.9{\times}10^{-2}$ in renal proximal tubule cell $(37^{\circ}C)$, $4.0{\times}10^{-2}\;and\;2.4{\times}10^{-2}$ in BBMV and BLMV $(25^{\circ}C)$, respectively. Formic acid has the highest permeability coefficient among the weak acids tested, which was $4.9{\times}10^{-3}$ in liposome, $5.0{\times}10^{-3}$ in renal proximal tubule cell, $9.1{\times}10^{-3}$ in BBMV and $3.8{\times}10^{-3}$ in BLMV. There was a linear relationship between external concentration of nonionized formic acid and initial rate of flux of formic acid in liposome, and the slope coincided with the value of permeability coefficient of formic acid measured in pH 7.0. These results show that techniques of stopped-flow and epifluorescence microscopy with entrapped fluorophore provide the precise method of measurement of very rapid transport of nonelectrolytes through membranes with the advantages of instantaneous mixing effect, good resolution time and easy manipulation.

  • PDF

MOLECULAR NUCLEAR IMAGING FOR TARGETING AND TRAFFICKING

  • Bom Hee-Seung;Min Jung-Jun;Jeong Hwan-Jeong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.399-404
    • /
    • 2006
  • Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and $^{99m}Tc$ as a radionuclide. We developed $^{99m}Tc-galactosylated$ chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed $^{99m}Tc-HYNIC-chitosan-transferrin$ to target inflammatory cells, which was more effective than $^{67}Ga-citrate$ for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of $^{99m}Tc-HMPAO-labeled$ liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that $^{99m}Tc-labeled$ biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques.

Liposome-mediated in Vivo Delivery of Transgene by Vein Injection

  • Choi, Seung-Kyu;Choi, Sung-Sik;Hwang, Chang-Nam;Lee, Sang-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.98-98
    • /
    • 2003
  • Direct gene transfer to mammalian tissues has significant potential for gene therapy and transgenesis. Liposome-mediated in vivo transfection has begun to gain attention as an alternative to viral vectors, and may also be a good mode of transfection in gene transfer. Interestingly, polymerized cationic liposomes are reported to be very stable in the bloods and efficient for in vivo gene transfer. To examine a possible gene delivery in vivo, we investigated the efficacy and safety of the liposome-mediated gene transfer using vein injection in chick or mouse as model animals. The number of injected pGFP-LacZ using either a commercial or home-made liposomes was 8 and 19 at 16 and 7 day of hatch, respectively. One of injected chick of each experiments was analyzed and the rest is being bred. In mouse, 4/22 showed expression of pGFP-LacZ but 8/22 showed no expression and the remaining animals are also being bred. After injection of liposome/pGFP-LacZ complex into wing vein of 7 or 16 day-old chick, pGFP-LacZ was detected in various tissues isolated from not only young chick but also old chick were turned out to possess. exogenous DNA. Transcripts and proteins of the transgene were also detected by RT-PCR or histochemical analysis, respectively. These results suggest that injected DNA were inserted to genome and produced mRNA and proteins in various tissues and may give an important tools for effective gene delivery in gene therapy or transgenesis.

  • PDF

Antiviral Efficacy of a Short PNA Targeting microRNA-122 Using Galactosylated Cationic Liposome as a Carrier for the Delivery of the PNA-DNA Hybrid to Hepatocytes

  • Kim, Hyoseon;Lee, Kwang Hyun;Kim, Kyung Bo;Park, Yong Serk;Kim, Keun-Sik;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.735-742
    • /
    • 2013
  • Peptide nucleic acids (PNAs) that bind to complementary nucleic acid sequences with extraordinarily high affinity and sequence specificity can be used as antisense oligonucleotides against microRNAs, namely antagomir PNAs. However, methods for efficient cellular delivery must be developed for effective use of PNAs as therapeutic agents. Here, we demonstrate that antagomir PNAs can be delivered to hepatic cells by complementary DNA oligonucleotide and cationic liposomes containing galactosylated ceramide and a novel cationic lipid, DMKE (O,O'-dimyristyl-N-lysyl glutamate), through glycoprotein-mediated endocytosis. An antagomir PNA was designed to target miR-122, which is required for translation of the hepatitis C virus (HCV) genome in hepatocytes, and was hybridized to a DNA oligonucleotide for complexation with cationic liposome. The PNA-DNA hybrid molecules were efficiently internalized into hepatic cells by complexing with the galactosylated cationic liposome in vitro. Galactosylation of liposome significantly enhanced both lipoplex cell binding and PNA delivery to the hepatic cells. After 4-h incubation with galactosylated lipoplexes, PNAs were efficiently delivered into hepatic cells and HCV genome translation was suppressed more than 70% through sequestration of miR-122 in cytoplasm. PNAs were readily released from the PNA-DNA hybrid in the low pH environment of the endosome. The present study indicates that transfection of PNA-DNA hybrid molecules using galactosylated cationic liposomes can be used as an efficient non-viral carrier for antagomir PNAs targeted to hepatocytes.

Effects of Local Anesthetics on the Rate of Rotational Mobility of Phospholipid Liposomes

  • Chung, In-Kyo;Kim, Dae-Gyeong;Chung, Yong-Za;Kim, Bong-Sun;Choi, Chang-Hwa;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.279-284
    • /
    • 2000
  • Using fluorescence probes, 2-(9-anthroyloxy) stearic acid (2- AS) and 12-(9-anthroyloxy) stearic acid (12-AS), we determined the differential effects of local anesthetics (tetracaine-HCI, bupivacaine-HCI, lidocaine-HCI, prilocaine-HCI and procaine-HCI) on the differential rotational rate between the surface (in carbon number 2 and its surroundings including the head group) and the hydrocarbon interior (in carbon number 12 and its surroundings) of the outer monolayer of the total phospholipid fraction liposome that is extracted from synaptosomal plasma membrane vesicles. The anisotropy (r) values for the hydrocarbon interior and the surface region of the liposome outer monolayer were$0.051{\pm}0.001$ and $0.096{\pm}0.001,$ respectively. This means that the rate of rotational mobility in the hydrocarbon interior is faster than that of the surface region. Local anesthetics in a dosedependent manner decreased the anisotropy of 12-AS in the hydrocarbon interior of the liposome outer monolayer, but increased the anisotropy of 2-AS in the surface region of the monolayer. These results indicate that local anesthetics have significant disordering effects on the hydrocarbon interior, but have significant ordering effects on the surface region of the liposome outer monolayer.

  • PDF

Expression and Biochemical Characterization of the Bacillus thuringiensis Cry4B ${\alpha}1$-${\alpha}5$ Pore-forming Fragment

  • Puntheeranurak, Theeraporn;Leetacheewa, Somphob;Katzenmeier, Gerd;Krittanai, Chartchai;Panyim, Sakol;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.293-298
    • /
    • 2001
  • Tryptic activation of the 130-kDa Bacillus thuringiensis Cry4B $\delta$-endotoxin produced protease-resistant products of ca. 47 kDa and ca. 21 kDa. The 21-kDa fragment was identified as the N-terminal five-helix bundle (${\alpha}1-{\alpha}5$,) which is a potential candidate for membrane insertion and pore formation. In this study, we constructed the recombinant clone over-expressing this putative pore-forming (PPF) fragment as inclusion bodies in Escherichia coli. The partially purified inclusions were composed of a 23-kDa protein, which cross-reacted with Cry4B antibodies, and whose N-terminus was identical to that of the 130-kDa protein. Dissimilar to protoxin inclusions, the PPF inclusions were only soluble when the carbonate buffer, pH 9.0, was supplemented with 6 M urea. After renaturation via a stepwise dialysis, the refolded PPF protein appeared to exist as an oligomer and was structurally stable upon trypsin treatment. Unlike the 130kDa protoxin, the refolded protein was able to release entrapped glucose from liposomes, and showed comparable activity to the full-length activated toxin, although it lacks larvicidal activity These results, therefore, support the notion that the PPF fragment that consists of ${\alpha}1-{\alpha}5$ of the activated Cry4B toxin is involved in membrane pore-formation.

  • PDF

Modulation of the Specific Interaction of Cardiolipin with Cytochrome c by Zwitterionic Phospholipids in Binary Mixed Bilayers: A $^2H$-and $^{31}P$-NMR Study

  • Kim, Andre;Jeong, In-Chul;Shim, Yoon-Bo;Kang, Shin-Won;Park, Jang-Su
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.446-451
    • /
    • 2001
  • The interaction of cytochrome c with binary phospholipid mixtures was investigated by solid-state $^2H$- and $^{31}P$-NMR. To examine the effect of the interaction on the glycerol backbones, the glycerol moieties of phosphatidylcholine (PC), and cardioliph (CL) were specifically deuterated. On the binding of cytochrome c to the binary mixed bilayers, no changes in the quadrupole splittings of each of the components were observed for the PC/PG, PE/CL and PE/PG liposomes. In contrast, the splittings of CL decreased on binging of protein to the PC/CL liposomes, although those of PC did not change at all. This showed that cytochrome c specifically interacts with CL in PC/CL bilayers, and penetrates into the lipid bilayer to some extent so as to perturb the dynamic structure of the glycerol backbone. This is distinctly different from the mode of interaction of cytochrome c with other binary mixed bilayers. In the $^{31}P$-NMR spectra, line broadening and a decrease of the chemical shift anisotropy were observed on the binding of cytochrome c for all binary mixed bilayers that were examined. These changes were more significant for the PC/CL bilayers. Furthermore, the line broadening is more significant for PC than for CL in PC/CL bilayers. Therefore, it can be concluded that with the polar head groups, not only CL but also PC are involved in the interaction with cytochrome c.

  • PDF

The Effect of Dimyristoylphosphatidylethanol on the Lateral and Rotational Mobilities of Liposome Lipid Bilayers

  • Jang, Hye-Ock;Huh, Min-Hoi;Lee, Seung-Woo;Lee, Young-Ho;Lee, Jong-Hwa;Seo, Jun-Bong;Koo, Kyo-Il;Jin, Seong-Deok;Jeong, Je-Hyung;Lim, Jang-Seop;Bae, Moon-Kyung;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.839-847
    • /
    • 2005
  • The aim of this study was to provide the basis to further examine the mode of action of ethanol. Fluorescent probes reported to have different membrane mobilities were used to evaluate the effect of dimyristoylphosphatidylethanol (DMPEt) on the lateral and rotational mobilities of liposome lipid bilayers. An experimental procedure, based on the selective quenching of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, was used. DMPEt increased the bulk lateral and rotational mobilities, and had a greater fluidizing effect on the outer than the inner monolayer. These effects of DMPEt on liposomes may be responsible for some, but not all, of the general anesthetic actions of ethanol.

In vitro Transport of Fexofenadine.HCl in Deformable Liposomes Across the Human Nasal Epithelial Cell Monolayers

  • Lin, Hong-Xia;Lee, Chi-Ho;Shim, Chang-Koo;Chung, Suk-Jae;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.483-489
    • /
    • 2004
  • Fexofenadine HCl is non-sedating histamine H1 receptor antagonist that can be used for the treatment of seasonal allergic rhinitis. The objective of this study was to investigate whether the carriers of deformable liposomes can enhance the transepithelial permeability of fexofenadine HCl across the in vitro ALI human nasal monolayer model. Characterization of this model was achieved by bioelectric measurements and morphological studies. The passage 2 and 3 of cell monolayers exhibited the TEER value of $2852\;{\pm}\;482\;ohm\;{\times}\;cm^2$ on 11 days of seeding and maintained high TEER value for 5 days. The deformable liposome of fexofenadine HCl was prepared with phosphatidylcholine (PC) and cholic acid using extruder method. The mean particle size was about 200 nm and the maximum entrapment efficiency of 33.0% was obtained in the formulation of 1% PC and $100\;{\mu}g/ml$ fexofenadine HCl. The toxicity of the deformable liposome to human nasal monolayers was evaluated by MTT assay and TEER value change. MTT assay showed that it has no toxic effect on the nasal epithelial cells in 2-hour incubation when the PC concentration was below 1%. However, deformable liposome could not enhance the transepithelial permeability $(P_{app})$ and cellular uptake of fexofenadine HCl. In conclusion, the in vitro model could be used in nasal drug transport studies and evaluation of transepithelial permeability of formulations.