Browse > Article

The Effect of Dimyristoylphosphatidylethanol on the Lateral and Rotational Mobilities of Liposome Lipid Bilayers  

Jang, Hye-Ock (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Huh, Min-Hoi (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Lee, Seung-Woo (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Lee, Young-Ho (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Lee, Jong-Hwa (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Seo, Jun-Bong (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Koo, Kyo-Il (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Jin, Seong-Deok (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Jeong, Je-Hyung (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Lim, Jang-Seop (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Bae, Moon-Kyung (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Yun, Il (College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
Publication Information
Archives of Pharmacal Research / v.28, no.7, 2005 , pp. 839-847 More about this Journal
Abstract
The aim of this study was to provide the basis to further examine the mode of action of ethanol. Fluorescent probes reported to have different membrane mobilities were used to evaluate the effect of dimyristoylphosphatidylethanol (DMPEt) on the lateral and rotational mobilities of liposome lipid bilayers. An experimental procedure, based on the selective quenching of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, was used. DMPEt increased the bulk lateral and rotational mobilities, and had a greater fluidizing effect on the outer than the inner monolayer. These effects of DMPEt on liposomes may be responsible for some, but not all, of the general anesthetic actions of ethanol.
Keywords
Dimyristoylphosphsatidylethanol; Liposomes; Transbilayer lateral and rotational mobility; Fluorescence quenching technique;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Bagatolli, L. A. and Gratton, E., Two photon fluorescence microscopy observation of shape change at the phase transition in phospholipid giant unilamellar vesicles. Biophys. J., 77, 2090-2101 (1999)   DOI   ScienceOn
2 Chin, J. H. and Goldstein, D. B., Drug tolerance in biomembranes: a spin label study of the effects of ethanol. Science, 196, 684-685 (1977b)   DOI   PUBMED
3 Dimitrov, D. S. and Angelova, M. L., Lipid swelling and liposome formation on solid surfaces in external electric fields. Prog. Colloid. Polym. Sci., 73, 48-56 (1987)   DOI
4 Franks, N. P. and Lieb, W. R., Do general anesthetics act by competitive binding to specific receptors? Nature, 310, 599- 601 (1993)   DOI   ScienceOn
5 Franks, N. P. and Lieb, W. R., Molecular and cellular mechanisms of general anesthesia. Nature, 367, 607-614 (1994)   DOI   ScienceOn
6 Gonzales, R. A. and Hoffman, P. L., Receptor-gated ion channels may be selective CNS targets for ethanol. Trends Pharmacol. Sci., 12, 1-3 (1991)   DOI   ScienceOn
7 Huang, N.-N., Florine-Casteel, K., Feigenson, G. W., and Spink, C., Effect of fluorophore linkage position of n-(9-anthroyloxy) fatty acids on probe distribution between coexisting gel and fluid phospholipid phases. Biochim. Biophys. Acta, 939, 124- 130 (1988)   DOI   ScienceOn
8 Jacobs, R. E. and White, S. H., The nature of the hydrophobic binding of small peptides at the bilayer interface. Implications for the insertion of transbilayer helices. Biochemistry, 28, 3421-3437 (1989)   DOI   ScienceOn
9 Kang, J.-S., Choi, Ch.-M., and Yun, I., Effects of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured mouse myeloma cell line Sp2/0-Ag14. Biochim. Biophys. Acta, 1281, 157-163 (1996)   DOI   ScienceOn
10 Omodeo-Sale, M. F., Cestaro, B., Mascherpa, A., Monti, D., and Masserini, M., Enzymatic synthesis and thermotropic behavior of phosphatidylethanol. Chem. Phys. Lipids, 50, 135-142 (1989)   DOI   ScienceOn
11 Yun, I. and Kang, J.-S., The general lipid composition and aminophospholipid asymmetry of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex. Mol. Cells, 1, 15-20 (1990)
12 Yun, I., Lee, S.-H., and Kang, J.-S., Effects of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured Mar 18.5 hybridoma cells. J. Membr. Biol., 138, 221-227 (1994)   DOI   PUBMED
13 Franks, N. P. and Lieb, W. R., Neuron membranes: anesthetics on the mind. Nature, 328, 113-114 (1987)   DOI   ScienceOn
14 Yun, I., Cho, E. S., Jang, H. O., Kim, U. K., Choi, C. H., Chung, I. K., Kim, I. S., and Wood, W. G., Amphiphilic effects of local anesthetics on rotational mobility in neuronal and model membranes. Biochim. Biophys. Acta, 1564, 123-132 (2002)   DOI   ScienceOn
15 Sanna, E., Concas, A., Serra, M., Santoro, G., and Biggio, G., Ex vivo binding of t-[35S)butylbicyclophosphorothionate: a biochemical tool to study the pharmacology of ethanol at the gamma-aminobutyric acid-coupled chloride channel. J. Pharmacol. Exp. Ther., 256, 922-928 (1991)
16 Alling, C., Gustavsson, L., Mansson, J.-E., Benthin, G., and Anggard, E., Phosphatidylethanol formation in rat organs after ethanol treatment. Biochim. Biophys. Acta, 793, 119- 122 (1984)   DOI   ScienceOn
17 Jang, H. O., Jeong, D. K., Ahn, S. H., Yoon, C. D., Jeong, S. C., Jin, S. D., and Yun, I. Effects of chlorpromazine.HCl on the structural parameters of bovine brain membranes. J. Biochem. Mol. Biol., 37, 603-611 (2004b)   DOI
18 Stubbs, C. D. and Williams, B. W., Fluorescence in membranes; in Fluorescence Spectroscopy in Biochemistry, In Lakowicz, J. R. (Ed). Vol. III, Plenum Press, New York, pp 231-263, (1992)
19 Bae, M. K., Huh, M. H., Lee, S. W., Kang, H. G., Pyun, J. H., Kwak, M. H., Jang, H. O., and Yun, I., Effects of dopamine HCl on structural parameters of bovine brain membranes. Arch. Pharm. Res., 27, 653-661 (2004)   DOI   ScienceOn
20 Davidson, F. M. and Long, C., The structure of the naturally occurring phosphoglycerides. 4. Action of cabbage-leaf phospholipase D on ovolecithin and related substances. Biochem. J., 69, 458-466 (1958)   DOI
21 Franks, N. P. and Lieb, W. R., Mapping of general anesthetic target sites provides a molecular basis for cutoff effects. Nature, 316, 349-351 (1985)   DOI   ScienceOn
22 Chin, J. H. and Goldstein, D. B., Cholesterol blocks the disordering effects of ethanol in biomembranes. Lipids, 19, 929-935 (1984)   DOI   ScienceOn
23 Teeter, M. M., Water-protein interaction: the theory and experiment. Annu. Rev. Biophys. Biophys. Chem., 20, 577-600 (1991)   DOI   PUBMED
24 Lasic, D. D., The mechanism of vesicle formation. Biochem. J., 256, 1-11 (1988)   DOI
25 Menger, F. M. and Keiper, J. S., Chemistry and physics of giant vesicles as biomembrane models. Curr. Opin. Chem. Biol., 2, 726-732 (1998)   DOI   ScienceOn
26 Yun, I., Kim, Y.-S., Yu, S.-H., Chung, I.-K., Kim, I.-S., Baik, S.- W., Cho, G.-J., Chung, Y.-Z., Kim, S.-H., and Kang, J.-S., Comparision of several procedures for the preparation of synaptosomal plasma membrane vesicles. Arch. Pharm. Res., 13, 325-329 (1990)   DOI   ScienceOn
27 Bangham, A. D. and Mason, W., The effect of some general anesthetics on the surface potential of lipid monolayers. Br. J. Pharmacol., 66, 259-265 (1979)   DOI   ScienceOn
28 Yun, I., Yang, M.-S., Kim, I.-S., and Kang, J.-S., Bulk vs. transbilayer effects of ethanol on the fluidity of the plasma membrane vesicles of cultured Chinese hamster ovary cells. Asia Pacific J. Pharmacol., 8, 9-16 (1993)
29 Armbrecht, H. J., Wood, W. G., Wise, R. W., Walsh, J. B., Thomas, B. N., and Strong, R., Ethanol-induced disordering of membranes from different age groups of C57BL/6NNIA mice. J. Pharmacol. Exp. Ther., 226, 387-391 (1983)
30 Chin, J. H. and Goldstein, D. B., Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes. Mol. Pharmacol., 13, 435-441 (1977a)
31 Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951)
32 Zachariasse, K. A., Vaz, W. L. C., Stomayer, C., and Kuhnle, W., Investigation of human erythrocyte ghost membranes with intramolecular excimer probes. Biochim. Biophys. Acta, 688, 323-332 (1982)   DOI   ScienceOn
33 Bae, M. K., Jeong, D. K., Park, N. S., Lee, C. H., Cho, B. H., Jang, H. O., and Yun, I., Effects of ethanol on the physical properties of Neuronal Membranes. Mol. Cells, 19, 356-364 (2005)
34 Angelova, M. L., Soleau, S., Meleard, P. H., Faucon, J. F., and Bothorel, P., Preparation of giant vesicles by external AC fields, kinetics and application. Prog. Colloid. Polym. Sci., 89, 127-131 (1992)   DOI
35 Bagatolli, L. A. and Gratton, E., Two photon fluorescence microscopy of coexisiting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys. J., 78, 290-305 (2000)   DOI   ScienceOn
36 Bartlett, G. R., Phosphorous assay in column chromatography. J. Biol. Chem., 234, 466-468 (1959)
37 Schachter, D., Fluidity and function of hepatocyte plasma membranes. Hepatology, 4, 140-151 (1984)   DOI   PUBMED
38 Angelova, M. L. and Dimitrov, D. S., Liposome electroformation. Faraday Discuss. Chem. Soc., 81, 303-311 (1986)   DOI
39 Chin, J. H. and Goldstein, D. B., Membrane-disordering action of ethanol: variation with membrane cholesterol content and depth of the spin label probe. Mol. Pharmacol., 19, 425-431 (1981)
40 Omodeo-Sale, M. F., Lindi, C., Palestini, P., and Masserini, M., Role of phosphatidylethanol in membranes. Effects on membrane fluidity, tolerance to ethanol, and activity of membrane-bound enzymes. Biochemistry, 30, 2477-2482 (1991)   DOI   ScienceOn
41 Jang, H. O., Shin, H. G., and Yun, I., Effects of dimyristoylphosphatidylethanol on the structural parameters of neuronal membrane. Mol. Cells, 17, 485-491 (2004a)   PUBMED
42 Sheetz, M. P. and Singer, S. J., Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. U.S.A., 71, 4457-4461 (1974)   DOI   ScienceOn
43 Madeira, V. M. C. and Antunes-Madeira, M. C., Lipid composition of biomembranes: a complete analysis of sarcoplasmic reticulum phospholipids. Cienc. Biol., (Coimbra) 2, 265-291(1976)