• Title/Summary/Keyword: Lipogenesis

Search Result 221, Processing Time 0.033 seconds

Influence of (-)-Hydroxycitrate on food Intake, Body Weight and Lipogenesis in Rats ((-)-Hydroxycitrate의 식이 투여가 흰쥐의 식이 섭취량, 체중, 지방대사 및 합성에 미치는 영향)

  • 김상배
    • Journal of Nutrition and Health
    • /
    • v.30 no.2
    • /
    • pp.123-131
    • /
    • 1997
  • The influence of (-0-Hydroxycitrate(HCA), shown to be a competitive inhibitor of adenosine 5-triphosphate(ATP) citrate lyase, on food intake and body weight, serum triglyceride and cholosterol level, in vivo rates of fatty acid and cholesterol synthesis, and fat cell number and size was investigated. 3 groups of female, 5 weeks old Sprague Dawley rats, 8 animals each, were ad libitum meal-fed or pair-fed(3 hours from 10 : 00 to 13 : 00) AIN based high glucose diet for a total period of 8 weeks. Providing normolipidemic rats orally with 400mg of HCA formula containing approximately 20mg of HCA 1 hour prior to daily feeding schedule significantly depressed in vivo hepatic rates of fatty acid and cholesterol synthesis in the liver and adipose tissue. Serum triglyceride and cholesterol levels were significantly reduced by HCA. At the end of treatment period, the rats administered with HCA resulted in a significantly reduction in body weight gain. The reduction in weights was attributable to a significant decrease in fat cell size with a smaller extent, but not significant, reduction in fat cell number. Rats receiving HCA demonstrated less food intake than the controls ; however, this decreased caloric intake was not fully responsible for the HCA induced depression of hepatic and adipocytic lipogenesis, since experiment using pair-fed cojntrol rats showed, less magnitude but similar results. Both a anorectic and an antilipogenic properties of HCA seem to be responsible for this weight reduction activity of HCA. The outcome of this study suggest that metabolic regulation may be a feasible approach to the control of obesity and hyperlipidemia.

  • PDF

The Lipogenic Capacity of Hepatocytes and Lipolytic Rate of Adipocytes in Tsaiya Ducks during Growing and Laying Periods

  • Lien, T.F.;Jan, D.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1258-1262
    • /
    • 1999
  • With an attempt to elucidating the lipid metabolism of Tsaiya ducks, thirty ducks at growing (8 weeks of age) and laying periods (10 weeks after the onset of laying) were examined, respectively. The ducks were randomly allocated into ad libitum feeding and 3-day fasting groups, to investigate their in vitro hepatocytes lipogenesis capacity and adipocytes lipolysis rate. Results indicate that (1) the capacity of hepatocytes incorporation of glucose and acetate into total lipid and metabolite of $^{14}CO_2$ production during the laying period was greater than during the growing period. Approximately 50% of the glucose or acetate converted into triacylglycerol (TG) by the hepatocytes were recovered as fatty acid during the growing period, while it was 65-70% during the laying period. (2) Acetate used for lipogenesis ability was superior to glucose in both periods. (3) The adipocytes lipolysis rate was increased significantly (p<0.05) by fasting. In contrast, the capacity of incorporated glucose or acetate into total lipid, triacylglycerol, fatty acid and glycerol by hepatocytes was reduced significantly (p<0.05) by fasting.

The Short-Term Effects of Soft Pellets on Lipogenesis and Insulin Sensitivity in Rats

  • Bae, Cho-Rong;Hasegawa, Kazuya;Akieda-Asai, Sayaka;Kawasaki, Yurie;Cha, Youn-Soo;Date, Yukari
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.164-169
    • /
    • 2014
  • The purpose of the present study was to investigate the short-term effects of a 12-day, soft pellet (SP) diet with a 3-h restricted feeding schedule on caloric intake, body weight, lipid metabolism, and insulin sensitivity. Glucose and insulin levels were measured pre-, mid-, and post-feeding. The SP rats exhibited postprandial hyperglycemia compared to rats fed control pellets (CP). The insulin response of SP rats during a meal was significantly higher than that of CP rats. There were no significant differences in the hepatic triacylglycerol contents and lipogenesis gene mRNA levels of SP and CP rats. However, the hepatocytes of SP rats were slightly hypertrophic. In addition, histological analysis revealed that the pancreases of SP rats had more islet areas than those of CP rats. This study demonstrated that feeding an SP-only diet for 12 days induces glucose intolerance, suggesting that the consumption of absorbable food, like a soft diet, may trigger glucose metabolism insufficiency and lead to life-threatening diseases.

Ponciri Fructus Extract Induces Lipogenesis through Transcription Factor SREBP-1 Activation (지실 추출물의 전사인자 SREBP-1 활성에 의한 지질 생성 촉진)

  • Kim, Dae-Sung;Jeon, Byoung-Kook;Mun, Yeun-Ja;Lee, Ghang-Tai;Lee, Kun-Kuk;Woo, Won-Hong
    • YAKHAK HOEJI
    • /
    • v.56 no.4
    • /
    • pp.268-273
    • /
    • 2012
  • This study was to explore the lipogenic effect by ethanol extract of ponciri fructus (EPF) and possible molecular mechanisms in sebocyte. When SZ95 sebocyte cell line were treated with the EPF, lipid droplets were accumulated in the majority of cells. EPF increased expression of sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FAS) in the SZ95 cells. EPF augmented expression of PPAR-${\beta}$ and PPAR-${\gamma}$ but not that of PPAR-${\alpha}$. These results suggest that EPF induces lipogenesis in SZ95 cells through SREBP-1, PPAR-${\beta}$ and PPAR-${\gamma}$ activations.

Vitamin C Inhibits Visceral Adipocyte Hypertrophy and Lowers Blood Glucose Levels in High-Fat-Diet-Induced Obese C57BL/6J Mice

  • Park, Younghyun;Jang, Joonseong;Lee, Dongju;Yoon, Michung
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • Vitamin C (ascorbic acid) supplementation has been suggested to negatively correlate with obesity in humans and other animals. Previous studies, including ours, have demonstrated that a high-fat diet (HFD) induces obesity and related diseases such as hyperlipidemia, hyperglycemia, insulin resistance, and nonalcoholic fatty liver disease. Here, we investigated the effects of vitamin C on visceral adipocyte hypertrophy and glucose intolerance in C57BL/6J mice. Mice received a low-fat diet (LFD, 10% kcal fat), HFD (45% kcal fat), or the same HFD supplemented with vitamin C (HFD-VC, 1% w/w) for 15 weeks. Visceral adiposity and glucose intolerance were examined using metabolic measurements, histology, and gene expression analyses. Mice in the HFD-VC supplementation group had reduced body weight, mesenteric fat mass, and mesenteric adipocyte size compared with HFD-fed mice. Vitamin C intake in obese mice also decreased the mRNA levels of lipogenesis-related genes (i.e., stearoyl-CoA desaturase 1 and sterol regulatory element-binding protein 1c) in mesenteric adipose tissues, inhibited hyperglycemia, and improved glucose tolerance. In addition, vitamin C attenuated the HFD-induced increase in the size of pancreatic islets. These results suggest that vitamin C suppresses HFD-induced visceral adipocyte hypertrophy and glucose intolerance in part by decreasing the visceral adipose expression of genes involved in lipogenesis.

Metformin Induces Lipogenesis and Apoptosis in H4IIE Hepatocellular Carcinoma Cells

  • Deokbae Park;Sookyoung Lee;Hyejin Boo
    • Development and Reproduction
    • /
    • v.27 no.2
    • /
    • pp.77-89
    • /
    • 2023
  • Metformin is the most widely used anti-diabetic drug that helps maintain normal blood glucose levels primarily by suppressing hepatic gluconeogenesis in type II diabetic patients. We previously found that metformin induces apoptotic death in H4IIE rat hepatocellular carcinoma cells. Despite its anti-diabetic roles, the effect of metformin on hepatic de novo lipogenesis (DNL) remains unclear. We investigated the effect of metformin on hepatic DNL and apoptotic cell death in H4IIE cells. Metformin treatment stimulated glucose consumption, lactate production, intracellular fat accumulation, and the expressions of lipogenic proteins. It also stimulated apoptosis but reduced autophagic responses. These metformin-induced changes were clearly reversed by compound C, an inhibitor of AMP-activated protein kinase (AMPK). Interestingly, metformin massively increased the production of reactive oxygen species (ROS), which was completely blocked by compound C. Metformin also stimulated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Finally, inhibition of p38MAPK mimicked the effects of compound C, and suppressed the metformin-induced fat accumulation and apoptosis. Taken together, metformin stimulates dysregulated glucose metabolism, intracellular fat accumulation, and apoptosis. Our findings suggest that metformin induces excessive glucose-induced DNL, oxidative stress by ROS generation, activation of AMPK and p38MAPK, suppression of autophagy, and ultimately apoptosis.

Hypotriglyceridemic effects of brown seaweed consumption via regulation of bile acid excretion and hepatic lipogenesis in high fat diet-induced obese mice

  • Han, A-Reum;Kim, Jae-Hoon;Kim, Eunyoung;Cui, Jiamei;Chai, In-Suk;Zhang, Guiguo;Lee, Yunkyoung
    • Nutrition Research and Practice
    • /
    • v.14 no.6
    • /
    • pp.580-592
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: The present study aimed to further investigate the potential health beneficial effects of long-term seaweed supplementation on lipid metabolism and hepatic functions in DIO mice. MATERIALS/METHODS: Four brown seaweeds (Undaria pinnatifida [UP], Laminaria japonica [LJ], Sargassum fulvellum [SF], or Hizikia fusiforme [HF]) were added to a high fat diet (HFD) at a 5% ratio and supplemented to C57BL/6N mice for 16 weeks. Triglycerides (TGs) and total cholesterol (TC) in the liver, feces, and plasma were measured. Fecal bile acid (BA) levels in feces were monitored. Hepatic insulin signaling- and lipogenesis-related proteins were evaluated by Western blot analysis. RESULTS: Fasting blood glucose levels were significantly reduced in the LJ, SF, and HF groups compared to the HFD group by the end of 16-week feeding period. Plasma TG levels and hepatic lipid accumulation were significantly reduced in all 4 seaweed supplemented groups, whereas plasma TC levels were only suppressed in the UP and HF groups compared to the HFD group. Fecal BA levels were significantly elevated by UP, LJ, and SF supplementation compared to HFD feeding only. Lastly, regarding hepatic insulin signaling-related proteins, phosphorylation of 5'-AMP-activated protein kinase was significantly up-regulated by all 4 types of seaweed, whereas phosphorylation of protein kinase B was up-regulated only in the SF and HF groups. Lipogenesis-related proteins in the liver were effectively down-regulated by HF supplementation in DIO mice. CONCLUSIONS: Brown seaweed consumption showed hypotriglyceridemic effects in the prolonged DIO mouse model. Specifically, combinatory regulation of BA excretion and lipogenesis-related proteins in the liver by seaweed supplementation contributed to the reduction of plasma and hepatic TG levels, which inhibited hyperglycemia in DIO mice. Thus, the discrepant and species-specific functions of brown seaweeds provide novel insights for the selection of future targets for therapeutic agents.

Cloning of porcine chemerin, ChemR23 and GPR1 and their involvement in regulation of lipogenesis

  • Huang, Jianfeng;Zhang, Jian;Lei, Ting;Chen, Xiaodong;Zhang, Yan;Zhou, Lulu;Yu, An;Chen, Zhilong;Zhou, Ronghua;Yang, Zaiqing
    • BMB Reports
    • /
    • v.43 no.7
    • /
    • pp.491-498
    • /
    • 2010
  • Chemerin is a novel adipokine which is abundant in adipose tissue to promote adipocyte differentiation and with significant relativity to BMI and insulin sensitivity. We report here the molecular characterization of porcine chemerin and its receptors ChemR23 and GPR1, as well as their transcriptional regulation during lipogenesis. Chemerin was mainly expressed in liver, intestine, kidney and adipose tissue, consistent with the expression pattern of GPR1, but not ChemR23, which was predominantly present in spleen and temperately in adipose tissue. We further investigated the lipogenesis-related transcriptional activation of $PPAR{\gamma}$ and KLF15 on chemerin and its receptors. The data showed that KLF15, but not $PPAR{\gamma}$, can up-regulate the mRNA level of chemerin, ChemR23 and GPR1, which was consistent with the results of luciferase assay that confirmed the effect of KLF15 on ChemR23 promoter. Taken together, our data provide basic molecular information for the further investigation on the function of chemerin in lipogenesis.

Studies on Selective Modulators and Anti-anorexigenic Agents in Korean Red Ginseng (한, 일 고려인삼 심포지움)

  • Hiromichi Okuda;Keizo Sekiya;Hiroshi Masuno;Takeshi Takaku;Kenji Kameda
    • Journal of Ginseng Research
    • /
    • v.11 no.2
    • /
    • pp.145-252
    • /
    • 1987
  • Isolated rat adipocytes are well known to possess opposite pathways of lipid metabolism: lipolysis and ipogenesis. Both of the metabolism respond to various biologically active substances such as epinephrine, ACTH and insulin. Epinephrine and ACTH stimulate lipolysis and insulin accelerates lipogenesis. Recently, Korean red ginseng powder was found to contain adenosine and an acidic poptide which inhibited epinephrine-induced lipolysis and sl imulated insulin-mediated lipogenesis from added glucose. The acidic peptide is consisted mainly of glutamic acid and glucose. Ginsenosides Rb1 and Re inhibited ACTH-induced lipolysis in isolated rat adipocytes, while they did not affect insulinstimulated lipogenesis, Thus, all these substances extracted from Korean red ginseng exhibited selective modulations toward the opposite metabolic pathways in rat adipocyte; They inhibited the lipolysis but not the lipogenesis. We call these substances"selective modulators". Recently, we isolated a toxic substance named "toxohormone-L " from ascites fluid of patients with various malignant tumors. The toxohormone-L stimulated lipolysis in rat adipocytes and induced anorexia in rats. Both the lipolytic and the anorexigenic actions of toxohormone-L were found to be inhibited by ginsenoside Rb2 in Korean red ginseng. Based on these results, physiological signifi¬cances of these substances in Korean red ginseng were discussed. Pan ax ginseng is a medicinal plant long used in treatment of various pathological states including general complaints such as head ache, shoulder ache, chilly constitution and anorexia in cancer patients, There have been many pharmacological studies on Panax ginseng roots. Petkovllreported that oral administration of an aqueous alcoholic extract of ginseng roots decreased the blood sugar levtl of rabbits. Saito2lreported that Panax ginseng suppressed hyperglycemia induced by epinephrine and high carbohydrate diets. These findings suggest that Panax ginseng roots contain insulin-like substances. Previously, we demonstrated that gin¬seng roots contain an insulin-like peptide which inhibits epinephrine-induced lipolysis and stimulated insulin-mediated lipogenesis. In 1984, we suggested that such an insulin-like substance should be called a selective modulator4). Present investigation describes the details of the selective modulators in ginseng roots. During progressive weight loss in patients with various neoplastic disease, depletion of fat stores have been observed. The depletion of body fat during growth of neoplasms is associated with increase in plasma free fatty acids. Recently, we found that the ascites fluid from patients with hepatoma or ovarian tumor and the pleural fluid from patients with malignant lymphoma elicited fatty acid release in slices of rat adipose tissue in vitro. The lipolytic factor, named"toxohormone-L". was purifed from the ascites fluid of patients with hepatoma. The isolated preparation gave a single band on both disc gel electrophoresis and sodium dodecyl sulfate(SDS)-acrylamide gel electrophoresis in the presence of ${\beta}$-mercaptoethanol. Its molecular weight was determined to be 70,000-75,000 and 65,000 by SDS-acrylamide gel electrophoresis and analytical ultracentrifugation, respectively. Injection of toxohormone-L into the lateral ventricle of rats significantly suppressed food and water intakes. There was at least 5 hr delay between its injection and appearance of its suppressive effect. In the present study, we also tried to find a inhibitory substance toward toxohormone-L from root powder of ginseng.

  • PDF