• Title/Summary/Keyword: Lipid A analysis

Search Result 1,174, Processing Time 0.027 seconds

Characterization of Cellular Growth, CO2 Assimilation and Neutral Lipid Production for 4 Different Algal Species (미세조류 4종의 성장, CO2 동화 및 지질 생성 특성)

  • Shin, Chae Yoon;Noh, Young Jin;Jeong, So-Yeon;Kim, Tae Gwan
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.547-555
    • /
    • 2020
  • Microalgae are a promising resource in energy and food production as they are cost-effective for biomass production and accumulate valuable biological resources. In this study, CO2 assimilation, biomass, and lipid production of 4 microalgal species (Chlorella vulgaris, Mychonastes homosphaera, Coelastrella sp., and Coelastrella vacuolata) were characterized at different CO2 concentrations ranging from 1% to 9%. Microscopic observation indicated that C. vulgaris was the smallest, followed by M. homosphaera, C. vacuolata, and Coelastrella sp. in order of size. C. vulgaris grew and consumed CO2 more rapidly than any other species. C. vulgaris exhibited a linear increase in CO2 assimilation (up to 9.62 mmol·day-1·l-1) as initial biomass increased, while the others did not (up to about 3 mmol·day-1·l-1). C. vulgaris, Coelastrella sp., and C. vacuolata showed a linear increase in the specific CO2 assimilation rate with CO2 concentration, whereas M. homosphaera did not. Moreover, C. vulgaris had a greater CO2 assimilation rate compared to those of the other species (14.6 vs. ≤ 11.9 mmol·day-1·l-1). Nile-red lipid analysis showed that lipid production per volume increased linearly with CO2 concentration in all species. However, C. vulgaris increased lipid production to 18 mg·l-1, compared to the 12 mg·l-1 produced by the other species. Thus, C. vulgaris exhibited higher biomass and lipid production rates with greater CO2 assimilation capacity than any other species.

CRISPR/Cas9-mediated knockout of the Vanin-1 gene in the Leghorn Male Hepatoma cell line and its effects on lipid metabolism

  • Lu Xu;Zhongliang Wang;Shihao Liu;Zhiheng Wei;Jianfeng Yu;Jun Li;Jie Li;Wen Yao;Zhiliang Gu
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.437-450
    • /
    • 2024
  • Objective: Vanin-1 (VNN1) is a pantetheinase that catalyses the hydrolysis of pantetheine to produce pantothenic acid and cysteamine. Our previous studies have shown that the VNN1 is specifically expressed in chicken liver which negatively regulated by microRNA-122. However, the functions of the VNN1 in lipid metabolism in chicken liver haven't been elucidated. Methods: First, we detected the VNN1 mRNA expression in 4-week chickens which were fasted 24 hours. Next, knocked out VNN1 via CRISPR/Cas9 system in the chicken Leghorn Male Hepatoma cell line. Detected the lipid deposition via oil red staining and analysis the content of triglycerides (TG), low-density lipoprotein-C (LDL-C), and high-density lipoprotein-C (HDL-C) after VNN1 knockout in Leghorn Male Hepatoma cell line. Then we captured various differentially expressed genes (DEGs) between VNN1-modified LMH cells and original LMH cells by RNA-seq. Results: Firstly, fasting-induced expression of VNN1. Meanwhile, we successfully used the CRISPR/Cas9 system to achieve targeted mutations of the VNN1 in the chicken LMH cell line. Moreover, the expression level of VNN1 mRNA in LMH-KO-VNN1 cells decreased compared with that in the wild-type LMH cells (p<0.0001). Compared with control, lipid deposition was decreased after knockout VNN1 via oil red staining, meanwhile, the contents of TG and LDL-C were significantly reduced, and the content of HDL-C was increased in LMH-KO-VNN1 cells. Transcriptome sequencing showed that there were 1,335 DEGs between LMH-KO-VNN1 cells and original LMH cells. Of these DEGs, 431 were upregulated, and 904 were downregulated. Gene ontology analyses of all DEGs showed that the lipid metabolism-related pathways, such as fatty acid biosynthesis and long-chain fatty acid biosynthesis, were enriched. KEGG pathway analyses showed that "lipid metabolism pathway", "energy metabolism", and "carbohydrate metabolism" were enriched. A total of 76 DEGs were involved in these pathways, of which 29 genes were upregulated (such as cytochrome P450 family 7 subfamily A member 1, ELOVL fatty acid elongase 2, and apolipoprotein A4) and 47 genes were downregulated (such as phosphoenolpyruvate carboxykinase 1) by VNN1 knockout in the LMH cells. Conclusion: These results suggest that VNN1 plays an important role in coordinating lipid metabolism in the chicken liver.

Effect of Luteolin on the Levels of Glycoproteins During Azoxymethane-induced Colon Carcinogenesis in Mice

  • Pandurangan, Ashok Kumar;Dharmalingam, Prakash;Sadagopan, Suresh Kumar Ananda;Ganapasam, Sudhandiran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1569-1573
    • /
    • 2012
  • Luteolin (LUT), a bioflavonoid has been used as a chemopreventive agent world-wide against chemically induced cancer. Hence we designed an experiment to assess chemopreventive action of LUT on lipid peroxidation (LPO) and glycoconjugates in azoxymethane (AOM)-induced colon carcinogenesis. Colon cancer was induced by 15 mg/body kg. body weight of AOM and administration of LUT (at the dose of 1.2 mg/kg. body weight) was till end of the study. Analysis of lipid peroxidative end products such as protein carbonyl (PC), malonadehyde (MDA) and conjucated dienes (CD) demonstrated significant increase in in AOM-induced animals with reduction by LUT (p<0.05). Increased levels of glycoconjugates such as hexose, hexosamine, sialic acid, fucose and mucoprotein were analyzed in serum and colon tissues examined histopathologically by periodic acid Schiff's (PAS) staining were also reversed by LUT l(p<0.05). The secondary marker of colon cancer mucin depleted foci (MDF) was assessed in control and experimental group of animals. A characteristic increase of MDF was observed in AOM-induced colon cancer animals. Treatment with LUT decreased the incidence of MDF. These results suggest that LUT alters the expression of glycoconjugates and suppress colon cancer. Hence, we speculate that LUT can be used as a chemopreventive agent to treat colon cancer.

CGI-58 Protein Acts as a Positive Regulator of Triacylglycerol Accumulation in Phaeodactylum tricornutum

  • Qin Shu;Yufang Pan;Hanhua Hu
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.242-250
    • /
    • 2023
  • Comparative gene identification-58 (CGI-58) is an activating protein of triacylglycerol (TAG) lipase. It has a variety of catalytic activities whereby it may play different roles in diverse organisms. In this study, a homolog of CGI-58 in Phaeodactylum tricornutum (PtCGI-58) was identified. PtCGI-58 was localized in mitochondria by GFP fusion protein analysis, which is different from the reported subcellular localization of CGI-58 in animals and plants. Respectively, PtCGI-58 overexpression resulted in increased neutral lipid content and TAG accumulation by 42-46% and 21-32%. Likewise, it also increased the relative content of eicosapentaenoic acid (EPA), and in particular, the EPA content in TAGs almost doubled. Transcript levels of genes involved in de novo fatty acid synthesis and mitochondrial β-oxidation were significantly upregulated in PtCGI-58 overexpression strains compared with wild-type cells. Our findings suggest that PtCGI-58 may mediate the breakdown of lipids in mitochondria and the recycling of acyl chains derived from mitochondrial β-oxidation into TAG biosynthesis. Moreover, this study potentially illuminates new functions for CGI-58 in lipid homeostasis and provides a strategy to enrich EPA in algal TAGs.

Nutritional Value and Digestibility of Tenebrio molitor As a Feed Ingredient for Rockfish (Sebastes schlegeli) (조피볼락의 사료원으로 갈색거저리의 영양적 가치 및 소화율 평가)

  • JANG, Tae-Ho;JUNG, Sung-Mok;KIM, Esther;LEE, Yong-Seok;LEE, Sang-Min
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.888-898
    • /
    • 2017
  • Tenebrio molitor larvae, also known as yellow mealworms (MW), are rich in protein and lipid and can serve as a potential alternative protein and energy source in commercial aquafeeds. Therefore, this study attempts to evaluate the effects of different drying methods on the nutritional value of MW meal. For this, live MW were cold-anaesthetized before being subjected to three different types of drying methods, including freeze-drying, oven-drying at $60^{\circ}C$ and air-drying at room temperature for three days, and compared for proximate composition and energy content. An in-vivo digestibility test was then conducted to evaluate the nutrient digestibility of MW meal in diets for rockfish, Sebastes schlegeli. A test diet was prepared by mixing the MW meal with a reference diet (Ref) in a 30:70 ratio with chromium oxide as an inert marker at the inclusion level of 0.5%. Rockfish with mean body weight of 150 g were stocked into a fecal collection system equipped with fiberglass tanks of 400 L capacity. Each group of fish was fed one of the experimental diets to apparent satiation for 4 weeks. The results of the proximate analysis showed that drying methods had no significant effect on crude protein, crude lipid, ash and energy contents of MW. Despite being a rich source of protein and lipid, MW meal was deficient in certain amino acids, particularly methionine, and highly unsaturated fatty acids, particularly 22:6n-3 (DHA) and 20:5n-3 (EPA). MW meal showed high digestibility values for protein (93%), lipid (97%) and energy (88%). These results may indicate that MW meal is a nutritious and acceptable feed ingredient, with comparable digestibility values to conventional animal and plant feedstuffs such as fish meal and soybean meal, in practical diet for rockfish at grower stage.

Protective effects of baicalein treatment against the development of nonalcoholic steatohepatitis in mice induced by a methionine choline-deficient diet

  • Jiwon Choi;Jayong Chung
    • Journal of Nutrition and Health
    • /
    • v.56 no.6
    • /
    • pp.589-601
    • /
    • 2023
  • Purpose: Baicalein, a natural flavone found in herbs, exhibits diverse biological activities. Nonalcoholic steatohepatitis (NASH) is an irreversible condition often associated with a poor prognosis. This study aimed to evaluate the effects of baicalein on the development of NASH in mice. Methods: Male C57BL/6J mice were randomly divided into four groups. Three groups were fed a methionine-choline-deficient (MCD) diet to induce NASH and were simultaneously treated with baicalein (at doses of 50 and 100 mg/kg) or vehicle only (sodium carboxymethylcellulose) through oral gavage for 4 weeks. The control group was fed a methionine-choline-sufficient (MCS) diet without the administration of baicalein. Results: The baicalein treatment significantly reduced serum levels of alanine aminotransferase and aspartate aminotransferase, suggestive of reduced liver damage. Histological analysis revealed a marked decrease in nonalcoholic fatty liver activity scores induced by the MCD diet in the mice. Similarly, baicalein treatment at both doses significantly attenuated the degree of hepatic fibrosis, as examined by Sirius red staining, and hepatocellular death, as examined by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Baicalein treatment attenuated MCD-diet-induced lipid peroxidation, as evidenced by lower levels of hepatic malondialdehyde and 4-hydroxynonenal, demonstrating a reduction in oxidative stress resulting from lipid peroxidation. Moreover, baicalein treatment suppressed hepatic protein levels of 12-lipoxygenase (12-Lox) induced by the MCD diet. In contrast, baicalein enhanced the activities of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. Additionally, baicalein treatment significantly reduced hepatic non-heme iron concentrations and hepatic ferritin protein levels in mice fed an MCD diet. Conclusion: To summarize, baicalein treatment suppresses hepatic lipid peroxidation, 12-Lox expression, and iron accumulation, all of which are associated with the attenuation of NASH progression.

A systematic exploration of ginsenoside Rg5 reveals anti-inflammatory functions in airway mucosa cells

  • Hyojin Heo;Yumin Kim;Byungsun Cha;Sofia Brito;Haneul Kim;Hyunjin Kim;Bassiratou M. Fatombi;So Young Jung;So Min Lee;Lei Lei;Sang Hun Lee;Geon-woo Park;Byeong-Mun Kwak;Bum-Ho Bin;Ji-Hwan Park;Mi-Gi Lee
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • Background: Hyperactivated airway mucosa cells overproduce mucin and cause severe breathing complications. Here, we aimed to identify the effects of saponins derived from Panax ginseng on inflammation and mucin overproduction. Methods: NCI-H292 cells were pre-incubated with 16 saponins derived from P. ginseng, and mucin overproduction was induced by treatment with phorbol 12-myristate 13-acetate (PMA). Mucin protein MUC5AC was quantified by enzyme-linked immunosorbent assay, and mRNA levels were analyzed using quantitative polymerase chain reaction (qPCR). Moreover, we performed a transcriptome analysis of PMA-treated NCI-H292 cells in the absence or presence of Rg5, and differential gene expression was confirmed using qPCR. Phosphorylation levels of signaling molecules, and the abundance of lipid droplets, were measured by western blotting, flow cytometry, and confocal microscopy. Results: Ginsenoside Rg5 effectively reduced MUC5AC secretion and decreased MUC5AC mRNA levels. A systematic functional network analysis revealed that Rg5 upregulated cholesterol and glycerolipid metabolism, resulting in the production of lipid droplets to clear reactive oxygen species (ROS), and modulated the mitogen-activated protein kinase and nuclear factor (NF)-kB signaling pathways to regulate inflammatory responses. Rg5 induced the accumulation of lipid droplets and decreased cellular ROS levels, and N-acetyl-ⳑ-cysteine, a ROS inhibitor, reduced MUC5AC secretion via Rg5. Furthermore, Rg5 hampered the phosphorylation of extracellular signal-regulated kinase and p38 proteins, affecting the NF-kB signaling pathway and pro-inflammatory responses. Conclusion: Rg5 alleviated inflammatory responses by reducing mucin secretion and promoting lipid droplet-mediated ROS clearance. Therefore, Rg5 may have potential as a therapeutic agent to alleviate respiratory disorders caused by hyperactivation of mucosa cells.

Alleviative Effects of Jujube Water Extract on the Inflammation and Barrier Damage in Hairless Mice Skin (Hairless 마우스에서 대추 열수추출물의 피부내 염증 및 장벽 손상 완화 효과)

  • Choi, So-Young;Kim, Young-Chul
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.4
    • /
    • pp.351-357
    • /
    • 2009
  • To investigate the alleviative effects of jujube water extract (JWE) on the inflammation and skin barrier damage, both the irradiation of UVB and the application of squalene monohydroperoxide (Sq-OOH) were applied to the back skin of experimental animals for 4 weeks. And at the same time experimental materials were applied topically. Six weeks female SKH-1 hairless mice were divided into five groups (five animals for each group) including normal (N; saline), control (C; UVB+Sq-OOH+saline), vehicle control (VC; UVB+Sq-OOH+vehicle), positive control (PC; UVB+Sq-OOH+0.01% retinoic acid) and experimental (E; UVB+Sq-OOH+JWE) groups. The skin erythema index in the E group was significantly low compared to the C group (p<0.05). Lipid (p<0.05) and water (p<0.01) capacities in the E group were significantly high compared to the C group. In comparison with the C group, E group showed a relatively well preserved lipid lamellae in the epidermis and a relatively much less infiltration of mast cells in the dermis or hypodermis. As for the both absolute and relative weights of the spleen, PC group were significantly higher than the other groups. These results suggest that JWE have a considerably inhibitory effect on the inflammation and the skin barrier damage induced by UVB irradiation and Sq-OOH application.

Comparative Analysis on Antioxidative Ability of Muscle between Laiwu Pig and Large White

  • Chen, Wei;Zhu, Hong-Lei;Shi, Yuan;Zhao, Meng-Meng;Wang, Hui;Zeng, Yong-Qing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1190-1196
    • /
    • 2012
  • This study was conducted to evaluate effects of storage temperatures ($4^{\circ}C$ and $20^{\circ}C$) and pig breeds (Laiwu pig and Large White pig) on the main antioxidative enzymes (superoxide dismutase, catalase, and glutathione peroxidase) activity and lipid oxidation in porcine Longissimus dorsi muscle. Activities of antioxidative enzymes (AOE) decreased slightly during storage, regardless of storage temperatures. Muscle antioxidative enzymes activities stored at $4^{\circ}C$ were higher than that stored at $20^{\circ}C$. Laiwu pig's enzymes activities were significantly (p<0.01) higher than Large White's. The level of malondialdehyde is a direct expression of the grade of lipid oxidation in meat. In our study, the malondialdehyde contents increased after 6 days storage. However, malondialdehyde contents of Laiwu pig were significantly (p<0.01) lower than Large White's. A lower content of malondialdehyde corresponds to a lower oxidation of lipids. These results indicated the muscle antioxidative ability of Laiwu pig was higher than Large White pig. It also implied that antioxidative enzymes were involved in the essentials and deciding mechanisms of meat quality by quenching oxygen free radicals and inhibiting lipid oxidation in muscle.

Protopanaxadiol ameliorates palmitate-induced lipotoxicity and pancreatic β-cell dysfunction in INS-1 cells

  • Dahae Lee;Sungyoul Choi;Ki Sung Kang
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.572-582
    • /
    • 2023
  • Background: Free fatty acid-induced lipotoxicity is considered to play an important role in pancreatic β-cell dysfunction. The effect of ginsenosides on palmitic acid-induced pancreatic beta-cells cell death and failure of glucose-stimulated secretion of insulin (GSIS) was evaluated in this study. Methods: Enzyme-linked immunosorbent assay kit for a rat insulin was used to quantify glucose-stimulated insulin secretion. Protein expression was examined by western blotting analysis. Nuclear condensation was measured by staining with Hoechst 33342 stain. Apoptotic cell death was assessed by staining with Annexin V. Oil Red O staining was used to measure lipid accumulation. Results: We screened ginsenosides to prevent palmitic acid-induced cell death and impairment of GSIS in INS-1 pancreatic β-cells and identified protopanaxadiol (PPD) as a potential therapeutic agent. The protection effect of PPD was likely due to a reduction in apoptosis and lipid accumulation. PPD attenuated the palmitic acid-induced increase in the levels of B-cell lymphoma-2-associated X/B-cell lymphoma 2, poly (ADP-ribose) polymerase and cleaved caspase-3. Moreover, PPD prevented palmitic acid-induced impairment of insulin secretion, which was accompanied by an increase in the activation of phosphatidylinositol 3-kinase, peroxisome proliferator-activated receptor γ, insulin receptor substrate-2, serine-threonine kinase, and pancreatic and duodenal homeobox-1. Conclusion: Our results suggest that the protective effect of PPD on lipotoxicity and lipid accumulation induced by palmitic acid in pancreatic β-cells.