• Title/Summary/Keyword: Lipase reaction

Search Result 190, Processing Time 0.81 seconds

Pancreatic lipase에 의한 은행(銀杏) glycerides의 분석(分析) (Analyses of glycerides in Gingko biloba pancreatic lipase)

  • 한재숙;박정륭
    • 한국식품영양과학회지
    • /
    • 제3권1호
    • /
    • pp.23-28
    • /
    • 1974
  • Fatty acids of Gingko biloba lipid and its binding position were determined by using pancreatic lipase. Optimum conditions for hydrolysis of glyceride were found as 9mg of lipase and 5 min reaction time for 50 mg of TG. The results showed that oleic acid and linoleic acid were presented about 40% and 29.7%, respectively, but linoleic acid was very small comparing with other seeds. It was found that both saturated and unsaturated fatty acids were almost equally distributed at ${\beta}\;and\;{\alpha}{\cdot}{\alpha}'-position$ of TG.

  • PDF

Hydrolysis of Rice Bran Oil Using Immobilized Lipase in a Stirred-Batch Reactor

  • Murty, V.Ramachandra;Bhat, Jayadev;Muniswaran, P.K.A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권6호
    • /
    • pp.367-370
    • /
    • 2002
  • Candida cylindracea lipase was immobilized by adsorption on acid washed glass beads. It was observed that protein loading of the support depends on the size of the particle, with smaller particle containing higher amount of protein per unit weight. Initial reaction rate linearly varied up to enzyme concentration of 17.25 U/mL. Amount of free fatty acids produced was linearly proportional up to the enzyme loading of 1650 $\mu$g/g of bead. Achievement of chemical equilibrium took longer time in the case of less protein loading. Degree of hydrolysis was found to decrease in second and third consecutive batch operations on repeated use of immobilized lipase.

Protein Aggregation and Adsorption upon In vitro Refolding of Recombinant Pseudomonas Lipase

  • Lee, Young-Phil;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권6호
    • /
    • pp.456-460
    • /
    • 1996
  • Recombinant Pseudomonas lipase was used to study protein aggregation and adsorption upon in vitro refolding. Protein adsorption as well as aggregation was responsible for major side reactions upon in vitro refolding as a function of protein concentration. The optimal range of protein concentration was determined by the relative contribution of protein aggregation and adsorption. Above the optimal range, the yield of active lipase inversely correlated with protein aggregation, showing a competition between folding and aggregation. However, adsorption of protein rather than protein aggregation is thought to contribute as a major side reaction of the refolding process at sub-optimal concentrations at which the formation of aggregates should be more reduced. Protein aggregation was influenced by the amount of guanidine hydrochloride in the refolding solvent. The refolding temperature was a critical factor determining the extent of protein aggregation. The refolding yield was also affected by the dilution fold and dilution mode, which suggests that the refolding process might kinetically compete with the rate of mixing.

  • PDF

APPLICATION OF STABLE EMULSIONS TO LIPASE IMMOBILISED MEMBRANE REACTORS FOR KINETIC RESOLUTION OF RACEMIC ESTERS

  • Giorno, Lidietta;Na, Li;Drioli, Enrico
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.65-68
    • /
    • 2003
  • The paper discusses the use of stable emulsion, prepared by membrane emulsification technology, to improve the enantiocatalytic performance of immobilised lipase in multiphasic membrane reactors. The production of optical pure (S)-naproxen from racemic naproxen methyl ester has been used as model reaction system. The enzyme was immobilised in the sponge layer (shell side) of capillary polyamide membrane with 50 kDa cut-off, The O/W emulsion, containing the substrate in the organic dispersed phase, was fed to the enzyme membrane reactor from shell-to-lumen. The results evidenced that lipase maintained stable activity during all the operation time (more than 250 hours), showing an enantiomeric excess (96 $\pm$2%) comparable to the free enzyme (98 $\pm$ 1%) and much higher compared to similar lipase-loaded membrane reactors used in two-separate phase systems (90%). The study showed that immobilised enzymes can achieve high stability as well as high catalytic activity and enantioselectivity.

  • PDF

마이크로에멀젼에서 리파아제 촉매에 의한 고급지방산 모노글리세리드의 생성에 있어 최적효과 (The Optimum Effect of Long Chain Fatty Monoglyceride from Microemulsion by Lipase Catalyst)

  • 노윤찬;남기대;김진탁;조경행
    • 공업화학
    • /
    • 제5권2호
    • /
    • pp.209-214
    • /
    • 1994
  • Mono alkyl glycerides have bean obtained in good yield by enzyme catalyst from soybean oil. The reaction was carried out in an oil rich microemulsion formula. Best results were obtained with sodium bis(2-ethyl hexyl) sulfo succinate(AOT), isooctane as hydrocarbon component and buffer of pH 7. The enzyme used was a 1,3-specific lipase which leaves the 2-position intact. However, the 2-monoglyceride formed slowly undergoes long chain acyl migration to 1-mono-glyceride. Optimal reaction time at $35^{\circ}C$ reaction temperature was found to be three hour.

  • PDF

톳 유래 수용성 다당류의 Lipase 저해활성과 지질 및 체중변화에 미치는 영향 (Effects of Water-Soluble Polysaccharides from Tott on Lipid Absorption and Animal Body Weight)

  • 백구;구본근;안병제;박제권
    • 한국식품영양과학회지
    • /
    • 제42권4호
    • /
    • pp.556-562
    • /
    • 2013
  • 본 연구에서는 기존의 유기용매를 이용한 추출을 지양하고 환경 친화적이고 간단한 추출방법을 고안하여 톳의 다당류 성분(WSP-A)을 추출해내었고, WSP-A가 지질의 흡수에 미치는 효과를 알아보기 위하여 in vitro 상으로 lipase inhibition assay와 in vivo로 고지방 식이로 비만을 유도한 rat을 이용한 동물실험을 수행하였다. 그 결과 톳 유래 다당류는 alginate와 유사한 성분이지만 성분당 분석을 통하여 fucose가 주 당성분인 polysaccharide로 밝혀졌고, 이는 alginate보다 뛰어나고 안정한 lipase inhibitor로써 작용하였다. 또한 동물실험에서는 WSP-A를 포함하는 음용수로 제공한 것과 제공하지 않은 대조군은 무게 변화량에 유의적인 차이를 보일 뿐 아니라 비만 예방군과 비만 치료군 사이에서도 유의적인 차이를 나타내었다. 식이섬유를 이용한 연구와 비교해보았을 때, 톳 유래 다당류는 식이섬유 이상의 효과뿐만 아니라 뛰어난 lipase inhibitor로 체중감량을 나타내었고 이는 인간췌장유래 리파아제(human pancreatic lipase)의 저해활성과 더불어 인체 내에서의 작용 가능성을 짐작하고 있다. 따라서 톳 유래 다당류 성분은 식이성 섬유의 공급원 뿐만 아니라 추후에 효소활성 저해 효과에 대한 보다 명확한 작용기전을 밝혀낸다면 단순한 건강 기능성 식품 소재보다 lipase inhibitor로써 항비만 약물로 고부가가치를 창출해낼 수 있을 것으로 사료된다.

양송이 배지에서 유래한 Lipase 생산균을 이용한 바이오디젤 생산 (Biodiesel production using lipase producing bacteria isolated from button mushroom bed)

  • 김현희;김찬겸;한창훈;이찬중;공원식;윤민호
    • 한국버섯학회지
    • /
    • 제13권1호
    • /
    • pp.56-62
    • /
    • 2015
  • 양송이 수확후 배지로부터 lipase 생산균을 분리하여 16S rDNA 유전자 분석을 통해 동정한 결과, Burkholderia cepacia ATCC와 99.8% 상동성을 나타냈다. 분리균 B. cepacia 배양여액 중에 함유된 효소단백질을 70% 황산암모늄으로 침전시켜 crude lipase를 회수하였다. 고정화 효소를 제조하기 위하여 crude lipase(CL)과 Novozyme lipase(NL)을 cross-linking 법에 의해 Silane화된 Silicagel에 고정화 시킨 결과, immobilized CL(ICL)은 61%, immobilized NL(INL)은 72%의 잔존활성을 유지하였다. 중성지방 Canola oil을 알칼리(NaOH) 촉매와 효소(CL 및 ICL) 촉매를 이용하여 지방산(fatty acid)으로 분해한 후, methanolysis에 의한 에스터전이반응(trans-esterification)을 통해 지방산으로부터 전환된 바이오디젤(fatty acid methyl ester, FAME)의 종류와 수율을 비교 하였다. 생성된 총 FAME 함량은 NaOH $781mg\;L^{-1}$, free lipase $681mg\;L^{-1}$, 고정화 lipase $598mg\;L^{-1}$순으로 높았으며, 지방산 조성별 FAME 함량은 linoleic acid(C18:1)가 약 50%로 가장 높았으며, stearic acid(C18:0)가 22%정도의 높은 수준이었다. 또한 반응시간이 증가함에 따라 CL과 ICL 모두 불포화지방산 FAME의 조성비는 감소하고, 상대적으로 포화지방산 FAME의 조성비는 증가하는 경향을 보여 lipase 효소가 transesterification 활성과 interesterification 활성을 동시에 가지는 것으로 여겨진다. 고정화효소의 잔여활성은 반복회수가 증가함에 따라 서서히 감소하여 4회 반복 후, 초기 활성도에 비해 ICL은 34% 와 INL은 21%까지 감소하였다.

Relationship Between Enhancement of Electrostriction and Decrease of Activation Energy in Porcine Pancreatic Lipase Catalysis

  • PARK HYUN;LEE KI-SEOG;PARK SEON-MI;LEE KWANG-WON;KIM AUGUSTINE YONGHWI;CHI YOUNG-MIN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.587-594
    • /
    • 2005
  • The contribution of electrostriction of water molecules to the stabilization of the negatively charged tetrahedral transition state of a lipase-catalyzed reaction was examined by means of kinetic studies involving high-pressure and solvent dielectric constant. A good correlation was observed between the increased catalytic efficiency of lipase and the decreased solvent dielectric constant. When the dielectric constant of solvents was lowered by 5.00 units, the losses of activation energy and free energy of activation were 7.92 kJ/mol and 11.24 kJ/mol, respectively. The activation volume for $k_{cat}$ decreased significantly as the dielectric constant of solvent decreased, indicating that the degree of electrostriction of water molecules around the charged tetrahedral transition state has been enhanced. These observations demonstrate that the increase in the catalytic efficiency of the lipase reaction with decreasing dielectric constant resulted from the stabilization of electrostatic energy for the formation of an oxyanion hole, and that this stabilization was caused by the increase of electrostricted water around the charged tetrahedral transition state. Therefore, we conclude that the control of solvent dielectric constant can stabilize the tetrahedral transition state, thus lowering the activation energy.

Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization

  • Xu, Jiakun;Ju, Caixia;Sheng, Jun;Wang, Fang;Zhang, Quan;Sun, Guolong;Sun, Mi
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2408-2412
    • /
    • 2013
  • We demonstrate herein the synthesis and modification of magnetic nanoparticles and its use in the immobilization of the lipase. Magnetic $Fe_3O_4$ nanoparticles (MNPs) were prepared by simple co-precipitation method in aqueous medium and then subsequently modified with tetraethyl orthosilicate (TEOS) and 3-aminopropyl triethylenesilane (APTES). Silanization magnetic nanoparticles (SMNP) and amino magnetic nanomicrosphere (AMNP) were synthesized successfully. The morphology, structure, magnetic property and chemical composition of the synthetic MNP and its derivatives were characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) analysis, X-ray diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analyses (TGA). All of these three nanoparticles exhibited good crystallization performance, apparent superparamagnetism, and the saturation magnetization of MNP, SMNP, AMNP were 47.9 emu/g, 33.0 emu/g and 19.5 emu/g, respectively. The amino content was 5.66%. The AMNP was used to immobilize lipase, and the maximum adsorption capacity of the protein was 26.3 mg/g. The maximum maintained activity (88 percent) was achieved while the amount of immobilized lipase was 23.7 mg $g^{-1}$. Immobilization of enzyme on the magnetic nanoparticles can facilitate the isolation of reaction products from reaction mixture and thus lowers the cost of enzyme application.

Increased mRNA Stability and Expression Level of Croceibacter atlanticus Lipase Gene Developed through Molecular Evolution Process

  • Jeong, Han Byeol;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.882-889
    • /
    • 2021
  • In order to use an enzyme industrially, it is necessary to increase the activity of the enzyme and optimize the reaction characteristics through molecular evolution techniques. We used the error-prone PCR method to improve the reaction characteristics of LipCA lipase discovered in Antarctic Croceibacter atlanticus. Recombinant Escherichia coli colonies showing large halo zones were selected in tributyrin-containing medium. The lipase activity of one mutant strain (M3-1) was significantly increased, compared to the wild-type (WT) strain. M3-1 strain produced about three times more lipase enzyme than did WT strain. After confirming the nucleotide sequence of the M3-1 gene to be different from that of the WT gene by four bases (73, 381, 756, and 822), the secondary structures of WT and M3-1 mRNA were predicted and compared by RNAfold web program. Compared to the mean free energy (MFE) of WT mRNA, that of M3-1 mRNA was lowered by 4.4 kcal/mol, and the MFE value was significantly lowered by mutations of bases 73 and 756. Site-directed mutagenesis was performed to find out which of the four base mutations actually affected the enzyme expression level. Among them, one mutant enzyme production decreased as WT enzyme production when the base 73 was changed (T→ C). These results show that one base change at position 73 can significantly affect protein expression level, and demonstrate that changing the mRNA sequence can increase the stability of mRNA, and can increase the production of foreign protein in E. coli.