Browse > Article

Relationship Between Enhancement of Electrostriction and Decrease of Activation Energy in Porcine Pancreatic Lipase Catalysis  

PARK HYUN (Korea Polar Research Institute, Korea Ocean Research & Development Institute)
LEE KI-SEOG (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute)
PARK SEON-MI (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute)
LEE KWANG-WON (Division of Food Science, Korea University)
KIM AUGUSTINE YONGHWI (Department of Food Science & Technology, Sejong University)
CHI YOUNG-MIN (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.3, 2005 , pp. 587-594 More about this Journal
Abstract
The contribution of electrostriction of water molecules to the stabilization of the negatively charged tetrahedral transition state of a lipase-catalyzed reaction was examined by means of kinetic studies involving high-pressure and solvent dielectric constant. A good correlation was observed between the increased catalytic efficiency of lipase and the decreased solvent dielectric constant. When the dielectric constant of solvents was lowered by 5.00 units, the losses of activation energy and free energy of activation were 7.92 kJ/mol and 11.24 kJ/mol, respectively. The activation volume for $k_{cat}$ decreased significantly as the dielectric constant of solvent decreased, indicating that the degree of electrostriction of water molecules around the charged tetrahedral transition state has been enhanced. These observations demonstrate that the increase in the catalytic efficiency of the lipase reaction with decreasing dielectric constant resulted from the stabilization of electrostatic energy for the formation of an oxyanion hole, and that this stabilization was caused by the increase of electrostricted water around the charged tetrahedral transition state. Therefore, we conclude that the control of solvent dielectric constant can stabilize the tetrahedral transition state, thus lowering the activation energy.
Keywords
Tetrahedral transition state; electrostriction; high-pressure kinetics; dielectric constant; lipase; activation volume;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Britto, P. J., L. Knipling, and J. Wolff. 2002. The local electrostatic environment determines cysteine reactivity of tubulin. J. Biol. Chem. 277: 29018-29027   DOI   ScienceOn
2 Burdette, R. A. and D. M. Quinn. 1986. Interfacial reaction dynamics and acylenzyme mechanism for lipoprotein lipasecatalyzed hydrolysis of lipid p-nitrophenyl ester. J. Biol. Chem. 261: 12016-12021   PUBMED
3 Lee, K. S., Y. M. Chi, and Y. G. Yu. 2002. Effect of pressure on catalytic properties of glutamate racemase from Aquifex pyrophilus, an extremophilic bacteria. J. Microbiol. Biotechnol. 12: 149-152
4 Liu, R., R. Ravindernath, C. E. Ha, C. E. Petersen, N. V. Bhagavan, and R. G. Eckenhoff. 2002. The role of electrostatic interaction in human serum albumin binding and stabilization by halothane. J. Biol. Chem. 277: 36373-37379   DOI   ScienceOn
5 Low, P. S. and G. N. Somero. ]975. Activation volumes in enzyme catalysis: Their sources and modification by lowmolecular-weight solutes. Proc. Nat. Acad. Sci. USA 72: 3014-3018
6 Morild, E. 1981. The theory of pressure effects on enzymes. Adv. Prot. Chem. 34: 93-166   DOI
7 Nakasako, M., M. Odaka, M. Yohda, N. Dohmae, K. Takio, N. Kamiya, and J. Endo. 1999. Tertiary and quaternary structure of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: Roles of hydration water molecules in stabilizing the structure and the structural origin of the substrate specificity of the enzyme. Biochemistry 38: 9887-9898   DOI   ScienceOn
8 Petersen, M. T. N., P. Fojan, and S. B. Petersen. 2001. How do lipases and esterases work: The electrostatic contribution. J. Biotechnol. 85: 115-147   DOI   ScienceOn
9 Svendsen, A. 2000. Lipase protein engineering. Biochim. Biophys. Acta 1543: 223-238   DOI   PUBMED   ScienceOn
10 Szeltner, Z., D. Rea, Y. Renner, V. Fulop, and L. Polgar. 2002. Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. J. Biol. Chem. 277: 42613-42622   DOI   ScienceOn
11 Van-Eldik, R., T. Asano, and W. J. Le Noble. 1989. Activation and reaction volumes in solution. Chem. Rev. 89: 549-688   DOI
12 Eckert, C. A. 1972. High pressure kinetics in solution. Annu. Rev. Phys. Chem. 23: 239-264   DOI   ScienceOn
13 Castaneda-Agullo, M. and L. M. Del-Castillo. 1958. The influence of the medium dielectric strength upon trypsin kinetics. J. Gen. Physiol. 42: 617-634   DOI   ScienceOn
14 Compton, P. D., R. J. Coli, and A. L. Fink. 1986. Effect of methanol cryosolvents on the structural and catalytic properties of bovine trypsin. J. Biol. Chem. 261: 1248-1252   PUBMED
15 Fink. A. L. 1974. The trypsin-catalyzed hydrolysis of N-benzyloxycarbonyl-L-lysine p-nitrophenyl ester in dimethylsulfoxide at sub-zero temperatures. J. Biol. Chem. 249: 5027-5032   PUBMED
16 Maurel, P. C. 1978. Relevance of dielectric constant and solvent hydrophobicity to the organic solvent effect in enzymology. J. Biol. Chem. 253: 1677-1683   PUBMED
17 Reichardt, C. 1988. Solvent effects on the rate of homogeneous chemical reactions, pp. 121-284. In: Solvents and Solvent Effects in Organic Chemistry, 2nd Ed., VCH, Weinheim
18 Warshel, A. and S. Russel. 1986. Theoretical correlation of structure and energetics in the catalytic reaction of trypsin. J. Am. Chem. Soc. 108: 6569-6579   DOI
19 Szeltner, Z., D. Rea, V. Renner, L. Juliano, V. Fulop, and L. Polgar. 2003. Electrostatic environment at the active site of prolyl oligopeptidase is highly influential during substrate binding. J. Biol. Chem. 278: 48786-48793   DOI   ScienceOn
20 Zandonella, G., P. Stadler, L. Haalck, F. Spener, F. Paltaut, and A. Hermetter. 1999. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. Eur. J. Biochem. 262: 63-69   DOI   ScienceOn
21 Low, P. S. and G. N. Somero. 1975. Protein hydration changes during catalysis: A new mechanism of enzyme rateenhancement and ion activation/inhibition of catalysis. Proc. Nat. Acad. Sci. USA 72: 3305-3309
22 Kim, J. B. and J. S. Dordick. 1993. Pressure affects enzyme function in organic media. Biotechnol. Bioeng. 42: 772-776   DOI   ScienceOn
23 Hermoso, J., D. Pignol, B. Kerfelec, I. Crenon, C. Chapus, and J. C. Fontecilla-Camps. 1996. Lipase activation by nonionic detergents: The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J. Biol. Chem. 271: 18007-18016   DOI   ScienceOn
24 Nicolas, A., M. Egmond, T. Verrips, J. Vlieg, S. Longhi, C. Cambillau, and C. Martinez. 1996. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. Biochemistly 35: 398-410   DOI   ScienceOn
25 Moreau, H., A. Moulin, Y. Gargouri, J. Noel, and R. Verger. 1991. Inactivation of gastric and pancreatic lipases by diethyl p-nitrophenyl phosphate. Biochemistry 30: 1037-1041   DOI   ScienceOn
26 Isaacs, N. S. 1981. Effect of pressure on rate process, pp. 181-354. In: Liquid Phase High-Pressure Chemistry. John Wiley & Sons, New York, U.S.A
27 Michels, P. C., J. S. Dordick, and D. S. Clark. 1997. Dipole formation and solvent electrostriction in subtilisin catalysis. J. Am. Chem. Soc. 119: 9331-9336   DOI   ScienceOn
28 Park, H., K. S. Lee, Y. M. Chi, and S. W. Jeong. 2005. Effects of methanol on the catalytic properties of porcine pancreatic lipase. J. Microbiol. Biotechnol. 15: 296-301
29 Xu, Z. F., A. Affleck, P. Wangikar, V. Suzawa, J. S. Dordick, and D. S. Clark. 1994. Transition state stabilization of subtilisins in organic media. Biotechnol. Bioeng. 43: 515-520   DOI   ScienceOn
30 Park, H. and Y. M. Chi. 1998. Distinction between the influence of dielectric constant and of methanol concentration on trypsin-catalyzed hydrolysis and methanolysis. J. Microbiol. Biotechnol. 8: 656-662
31 Taniguchi, Y. and S. Makimoto. 1988. High pressure studies of catalysis. J. Mol. Cat. 47: 323-334   DOI   ScienceOn
32 Warshel, A. 2000. Perspective on the energetics of enzymatic reaction. Theor. Chem. Acc. 103: 337-339   DOI   ScienceOn