• 제목/요약/키워드: Lipase activity

검색결과 590건 처리시간 0.03초

Rhei Rhizoma and Chunghyuldan Inhibit Pancreatic Lipase

  • Yang, Hyung-Kil;Kim, Young-Suk;Bae, Hyung-Sup;Cho, Ki-Ho;Shin, Ji-Eun;Kim, Nam-Jae;Kim, Dong-Hyun
    • Natural Product Sciences
    • /
    • 제9권1호
    • /
    • pp.38-43
    • /
    • 2003
  • Pancreatic lipase-inhibitory activity of the rhizome of Rhei Rhizoma and its antihyperlipidemic activity were measured. Rhei Rhizoma inhibited pancreatic lipase with $IC_{50}$ value of 6.5 mg/ml (triolein as a substrate). Rhei Rhizoma significantly inhibited serum TG level in corn oil feeding-induced mice, and serum TG and cholesterol in Triton WR-1339-induced hyperlipidemic mice. However, Rhei Rhizoma did not show the hypolipidemic activity in high cholesterol diet-induced hyperlipidemic mice. When in vitro pancreatic lipase-inhibitory and in vivo antihyperlipidemic activities of Whangryunhaedoktang (WT) and Chunghyuldan (CD), which is consisted of ingredients of WT and Rhei Rhizoma, were measured, CD exhibited more potent inhibitory activities than WT. Therefore these results suggest that antihyperlipidemic activity of Rhei Rhizoma and CD may be more or less originated from the inhibition of pancreatic lipase.

In Vitro Inhibitory Effect of Triterpenoidal Saponins from Platycodi Radix on Pancreatic Lipase

  • Xu Bao Jun;Han Li Kun;Zheng Yi Nan;Lee Jeong Hyun;Sung Chang Keun
    • Archives of Pharmacal Research
    • /
    • 제28권2호
    • /
    • pp.180-185
    • /
    • 2005
  • In the process of investigating anti-obesity effect of Platycodi Radix, we found that aqueous extract of Platycodi Radix might inhibit intestinal absorption of dietary fat by inhibiting pancreatic lipase (PL) activity. In order to clarify the anti-obesity mechanism of Platycodi Radix, activity-guided isolation was performed to find active components. The total saponin fraction of Platycodi Radix appeared to have a potent inhibitory activity against the hydrolysis of triolein emulsified with phosphatidycholine by pancreatic lipase in vitro. Based on these results, further purification of active components yielded 10 known triterpenoidal saponins, among these compounds, platycodin A, C, D, and deapioplatycodin D exhibited significant inhibitory effects on PL at the concentration of $500\;{\mu}g/mL$ with 3.3, 5.2, 34.8, and $11.67\%$ pancreatic lipase activity vs control, respectively. Platycodin D was found to inhibit the PL activity in a dose-dependent manner. Therefore, the anti-obesity effect of Platycodi Radix might be due to the inhibition of pancreatic lipase by its saponins.

Eisenia bicyclis 에탄올 추출물로부터 분리한 Dieckol의 Lipase 저해 Mode (Lipase Inhibitory Mode of Dieckol Isolated from Eisenia bicyclis Ethanol Extract)

  • 정슬아;김꽃봉우리;김동현;조지영;김태완;안동현
    • 한국미생물·생명공학회지
    • /
    • 제41권1호
    • /
    • pp.112-118
    • /
    • 2013
  • 대황 ethyl acetate 분획은 $IC_{50}$ 값이 1.31 mg/ml으로 에탄올 추출물보다 높은 lipase 저해활성을 나타내었다. Silicagel column chromatography를 이용하여 ethyl acetate 분획으로부터 얻은 sub-fraction 중 EA1 fraction이 $IC_{50}$ 값 0.54 mg/ml로 가장 높은 저해활성을 보였으며 더 나아가 HPLC를 이용하여 8개의 sub-fraction으로 분리하였다. HPLC fraction 중 fraction 5가 $IC_{50}$ 값 0.37 mg/ml로 높은 lipase 저해활성을 보였다. 이 fraction 5는 분자량 741.1로 $C_{36}H_{22}O_{18}$ 화합물인 phlorotannin derivative dieckol로 확인되었으며 lipase에 대해 비경쟁적 저해타입을 나타내었다. 이상의 결과로, 대황 에탄올 추출물로부터 분리한 dieckol의 lipase 저해 활성 및 저해 타입 확인을 통해 식품 산업에 항비만 소재로서 응용할 수 있을 것으로 사료되어진다.

Effects of Plant Oils and Minerals for the Inhibition of Lipase Activity of Staphylococcus aureus Isolated from Fermented Pork Meat

  • Cho, Sang-Buem;Chang, Woo-Kyung;Kim, Yun-Jung;Moon, Hyung-In;Joo, Jong-Won;Choi, In-Soo;Seo, Kun-Ho;Kim, Soo-Ki
    • 한국축산식품학회지
    • /
    • 제30권5호
    • /
    • pp.764-772
    • /
    • 2010
  • Staphylococcus aureus lipase is regarded as a virulence factor. The response of lipase activity to various factors can provide important insights concerning the prevention of S. aureus during meat fermentation. This study was conducted to evaluate the main effects of nutrients used in culture media, and their combined effects on the inhibition of lipase activity and cell growth of pathogenic S. aureus SK1593 isolated from fermented pork meat. A Plackett-Burman design was used to evaluate the main effects of variables, including olive oil, soybean oil, grapeseed oil, sesame oil, $CuSO_4$, $MgCl_2$, $KNO_3$, $CaCl_2$, and KCl. Significant negative effects on lipase activity were detected with soybean oil, grapeseed oil, $KNO_3$, and $CaCl_2$. Additionally, these nutrients were further selected as variables for the investigation of their combined effect on lipase activity, via response surface methodology. In order to confirm the regression model, a situation that only inhibits lipase activity was simulated. The predicted lipase activity and cell growth of the simulated situation were 14.0 U/mL and $9.6\;{\log}_{10}$ (CFU/mL), respectively, and the estimated value of those in the same medium showed 15.14 U/mL and $9.4\;{\log}_{10}$(CFU/mL) respectively. The lipase activity of the simulated medium was inhibited approximately 5-fold as compared to the basal medium, but no significant differences in cell counts were noted to exist between the basal and simulated media. These results suggest that soybean oil, grapeseed oil, $KNO_3$, and $CaCl_2$ can be used to inhibit the growth of pathogenic S. aureus during the process of meat fermentation.

Amberlite에 고정화된 Lipase 제조 및 효소적 Interesterification을 이용한 반응 특성 연구 (Immobilization of Lipases on Amberlite and Their Interesterification Reaction Characteristics)

  • 박소라;이기택
    • 한국식품과학회지
    • /
    • 제46권3호
    • /
    • pp.315-322
    • /
    • 2014
  • 본 연구는 미생물로부터 유래된 5종(AH, AK, AY, PS와 R)의 lipase들을 Amberlite XAD 7에 흡착법으로 고정화 시킨 후 각 immobilized lipase들의 특성을 알아보았다. 고정화 전과 후의 단백질 함량 및 각 free lipase들과 immobilized lipase들을 이용한 interesterification 반응물의 지방산과 TAG 조성을 분석하였다. 또한, immobilized lipase에 있어 중요한 요인인 reusability를 확인하였다. Free lipase의 단백질 함량은 2.22-11.41%로 AH가 가장 높았던 반면, immobilized lipase에서는 AH, PS와 AK가 mg protein/g support이 높았다. 한편, 반응 특성을 알아보기 위해 카놀라유, PEE와 StEE를 기질로 하여 batch type interesterification을 진행하였을 때, free lipase의 경우 free lipase R을 제외한 다른 free lipase들은 반응시간이 1시간에서 72시간으로 증가함에 따라 총 포화지방산 함량이 증가하였으며 그 중 free lipase AH가 반응성이 가장 높았다. 또한, RP-HPLC를 통해 free lipase AK 반응물을 분석한 결과, 반응시간이 길어질수록 카놀라유(0시간)에서 볼 수 있었던 57.49 area%의 ${\bigcirc}{\bigcirc}{\bigcirc}$가 6.53 area%로 감소하였다. 이는 각 free lipase들이 PEE와 StEE를 효소적 반응에 이용했기 때문이라고 판단된다. 한편, immobilized lipase AY와 R의 경우 반응시간이 1시간에서 48시간으로 증가하여도 카놀라유(0시간)의 총 포화지방산 함량과 큰 차이가 없었으나 immobilized AK의 경우 48시간에서 38.3 area%의 포화지방산 함량으로 가장 높은 활성을 보였다. 또한, 이를 사용하여 continuous type으로 반응하였을 때 유속이 느릴수록 효소와 기질 사이의 접촉 시간이 길어져 반응물의 총 포화지방산 함량이 증가함을 알 수 있었다. Reusability는 immobilized AK, AH와 PS 모두에서 두 번째 반복 반응을 하였을 때, 첫 번째 반응보다 총 포화지방산이 120-196.5% 증가하였다. 그러나 bounding protein 함량이 가장 높았던 immobilized AK는 support에 흡착되었던 free lipase AK의 탈착이 일어나 2번째 반응 후부터 활성이 감소한 반면, immobilized AH와 PS는 활성이 비교적 유지되었다.

Improved Homologous Expression of the Acidic Lipase from Aspergillus niger

  • Zhu, Si-Yuan;Xu, Yan;Yu, Xiao-Wei
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.196-205
    • /
    • 2020
  • In this study, the acidic lipase from Aspergillus niger (ANL) was homologously expressed in A. niger. The expression of ANL was significantly improved by the expression of the native ANL with the introns, the addition of the Kozak sequence and the optimization of the signal sequences. When the cDNA sequence of ANL fused with the glaA signal was expressed under the gpdA promoter in A. niger, no lipase activity could be detected. We then tried to improve the expression by using the full-length ANL gene containing three introns, and the lipase activity in the supernatant reached 75.80 U/ml, probably as a result of a more stable mRNA structure. The expression was further improved to 100.60 U/ml by introducing a Kozak sequence around the start codon due to a higher translation efficiency. Finally, the effects of three signal sequences including the cbhI signal, the ANL signal and the glaA signal on the lipase expression were evaluated. The transformant with the cbhI signal showed the highest lipase activity (314.67 U/ml), which was 1.90-fold and 3.13-fold higher than those with the ANL signal and the glaA signal, respectively. The acidic lipase was characterized and its highest activity was detected at pH 3.0 and a temperature of 45℃. These results provided promising strategies for the production of the acidic lipase from A. niger.

Purification and Biochemical Analysis of Rice Bran Lipase Enzyme

  • Kim, Young Hee
    • Journal of Plant Biotechnology
    • /
    • 제6권1호
    • /
    • pp.63-67
    • /
    • 2004
  • A simple procedure for the extraction of the lipolytic enzyme from rice bran has been developed. High activity of lipolytic enzyme was obtained by first defatting the rice bran to remove lipid components with various extraction conditions. Then, after rove cycles of aqueous extraction, rice bran lipolytic enzyme was purified using micro- and ultrafiltration apparatus. Lipolytic enzyme activity was estimated by its hydrolytic action of tributyrin. The result indicated that the standard activity curve of butyric acid showed that the potential rice bran enzyme is a hydrolytic lipase enzyme. In addition, it showed higher lipolytic activity and specific enzyme activity with further purification by micro- and ultrafiltration. The size of rice bran lipase enzyme was identified through 15 % SDS-PAGE. The molecular weight of the rice bran lipase enzyme was 41 kDa.

Inhibitory Effects of Marine Algae Extract on Adipocyte Differentiation and Pancreatic Lipase Activity

  • Kim, Eun-Sil;Lee, Kyoung-Jin;Oh, Kyoung-Hee;Ahn, Jong-Hoon;Kim, Seon-Beom;Liu, Qing;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Natural Product Sciences
    • /
    • 제18권3호
    • /
    • pp.153-157
    • /
    • 2012
  • Obesity, which is characterized by excessive fat accumulation in adipose tissues, occurs by fat absorption by lipase and sequential fat accumulation in adipocyte through adipocyte differentiation. Thus, inhibition of pancreatic lipase activity and adipocyte differentiation would be crucial for the prevention and progression of obesity. In the present study, we attempted to evaluate anti-adipogenic activity of several algae extracts employing preadipocytes cell line, 3T3-L1 as an in vitro assay system. The effects on pancreatic lipase activity in vitro were also evaluated. Total methanolic extracts of Cladophora wrightiana and Costaria costata showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Related to pancreatic lipase, C. wrightiana and Padina arborescens showed significant inhibition. Further fractionation of C. wrightiana, which showed the most potent activity, suggested that $CHCl_3$ and n-BuOH fraction are responsible for adipocyte differentiation inhibition, whereas n-BuOH and $H_2O$ fraction for pancreatic lipase inhibition. Our study also demonstrated that n-BuOH fraction was effective both in early and middle stage of differentiation whereas $CHCl_3$ fraction was effective only in early stage of differentiation. Taken together, algae might be new candidates in the development of obesity treatment.

Purification, Characterization and Immobilization of Lipase from Proteus vulgaris OR34 for Synthesis of Methyl Oleate

  • Misbah, Asmae;Koraichi, Saad Ibnsouda;Jouti, Mohamed Ali Tahri
    • 한국미생물·생명공학회지
    • /
    • 제48권4호
    • /
    • pp.491-505
    • /
    • 2020
  • A newly isolated strain, Proteus vulgaris OR34, from olive mill waste was found to secrete an alkaline extracellular lipase at 11 U·ml-1 when cultivated on an optimized liquid medium. This lipase was purified 94.64-fold with a total yield of 9.11% and its maximal specific activity was shown to be 3232.58 and 1777.92 U·mg-1 when evaluated using the pH-stat technique at 55℃ and pH 9 and Tributyrin TC4 or olive oil as the substrate. The molecular mass of the pure OR34 lipase was estimated to be around 31 kDa, as revealed by SDS-PAGE and its substrate specificity was investigated using a variety of triglycerides. This assay revealed that OR34 lipase preferred short and medium chain fatty acids. In addition, this lipase was stable in the presence of high concentrations of bile salt (NaDC) and calcium ions appear not to be necessary for its activity. This lipase was inhibited by THL (Orlistat) which confirmed its identity as a serine enzyme. In addition, the immobilization of OR34 lipase by adsorption onto calcium carbonate increased its stability at higher temperatures and within a larger pH range. The immobilized lipase exhibited a high tolerance to organic solvents and retained 60% of its activity after 10 months of storage at 4℃. Finally, the OR34 lipase was applied in biodiesel synthesis via oleic acid mediated esterification of methanol when using hexane as solvent. The best conversion yield (67%) was obtained at 12 h and 40℃ using the immobilized enzyme and this enzyme could be reused for six cycles with the same efficiency.

Radiolytic Immobilization of Lipase on Poly(glycidyl methacrylate )-grafted Polyethylene Microbeads

  • Choi Seong-Ho;Lee Kwang-Pill;Kang Hee-Dong;Park Hyun Gyu
    • Macromolecular Research
    • /
    • 제12권6호
    • /
    • pp.586-592
    • /
    • 2004
  • Poly(glycidyl methacrylate)-grafted polyethylene microbeads (POPM) presenting epoxy groups were prepared by radiation-induced graft polymerization of glycidyl methacrylate on the polyethylene microbead. The obtained POPM was characterized by IR spectroscopic, X-ray photoelectrons spectroscopy (XPS), scanning electron microscope (SEM), and thermal analyses. Furthermore, the abundance of epoxy groups on the POPM was determined by titration and elemental analysis after amination. The epoxy group content was calculated to be in the range 0.29-0.34 mmol/g when using the titration method, but in the range 0.53-0.59 mmol./g when using elemental analysis (EA) after amination. The lipase was immobilized to the epoxy groups of the POPM under various experi­mental conditions, including changes to the pH and the epoxy group content. The activity of the lipase-immobilized POPM was in the range from 160 to 500 unit/mg-min. The activity of the lipase-immobilized POPM increased upon increasing the epoxy group content. The lipase-immobilized POPM was characterized additionally by SEM, elec­tron spectroscopy for chemical analysis (ESCA), and EA.