• Title/Summary/Keyword: Lip Seal

Search Result 43, Processing Time 0.036 seconds

Finite Element Analysis of the Contact Stress Characteristics in Scraper Seals (스크레이퍼 실의 접촉응력 특성에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.895-902
    • /
    • 1999
  • This paper deals with a numerical study of the tribological contact stress distributions of elastomeric lip seals for oscillating shafts when the sealing interference and band width between the lip ease or contact seals and the shaft are present. Using the finite element method the contact stress and band width of scraper seals are analyzed for the sealing interference including some nonlinearities such as geometrical nonlinearity, material nonlinearity and nonlinear contact boundary condition. The FEM results showed that the contact stress concentrated on the contacting lip zone between the contacting edge of lip and the shaft for the increased interference. In double lip scraper seals, ole maximum contact stress of the dust lip, which is used to exclude foreign contaminants is six times higher than that of the primary sealing lip, which is used to contain lubricants.

Estimation on the effect of design variables for sealing performance of the dust seal using finite element simulation (유한요소해석을 이용한 더스트 씰 밀봉성에 대한 설계변수의 영향평가)

  • Lee K.O.;Lee S.U.;Huh Y.M.;Kang S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.123-124
    • /
    • 2006
  • Usually, hydraulic cylinder is widely used as the actuator in the equipment of construction machines, airplane and military machines. In case of these devices, due to use under severe environment such as water, $SiO^2$ and dust, etc. seal which has high packing ability and long service life has been required. These characteristics are largely influenced by material and geometries of seal such as approach angle, withdrawal angle and interference. Recently, many a study about seal material has been performed so that many materials have been developed. But the concrete studies including the relationships between geometry of seal and sealing performance have hardly been performed yet. Therefore, in this study, we predicted the deformation behavior and contact normal distribution of dust seal with the variation of geometries of seal lip using finite element analysis. And based on the results of analyses, we discussed the effects of the design variables fur sealing performance of the dust seal.

  • PDF

A Study on the Development of Ship's Stern Tube Sealing System(II) -Based on Face Seals- (선미관 밀봉장치의 개발에 관한 연구 (II) -풰이스 시일을 중심으로-)

  • 김영식;전효중;왕지석;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.5
    • /
    • pp.47-54
    • /
    • 1991
  • The lip seals widely used nowadays in stern tube sealing system of ships have radial sealing contact with shafts or liners, on the other hand the face seals of stern tube sealing system have axial sealing contact with seat. Because of axial sealing contact, the face seals have a large number of merits such as durability of life, simplicity of structure, easy fitting and replacement, etc. In this paper, for the purpose of development of face seals, the fundamental properties of axial sealing contact were analyzed and a trial face seal was designed and manufactured using N.B.R. rubber and Thordon which is widely used for bearing materials. The seal proper of trial face seal was made from N.B.R. rubber and the face insert was made from Thordon, thermosetting resins which are three dimensional, cross linked condensation polylmers. The performance test of trial face seal was carried out on the test bench which was specially designed and manufactured. The results were satisfactory enough to be used in practical stern tube sealing system.

  • PDF

Contact Analysis between Rubber Seal, a Spherical Wear Particle and Steel Surface (시일과 스틸면 사이의 구형 마멸입자에 의한 접촉해석)

  • Park, Tae-Jo;Yoo, Jae-Chan;Jo, Hyeon-Dong
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.297-301
    • /
    • 2008
  • In many dynamic seals such as lip seal and compression packings, it is well known that wear occur at the surface of heat treated steel shaft as results of the intervened wear particle. It is widely understood that the dominant wear mechanism related in sealing surfaces is abrasive wear. However, little analytical and experimental studies about this problems have been done until now. In this paper, a contact analysis is carried out using MARC to investigate the wear mechanism in contact seal applications considering elastomeric seal, a elastic perfect-plastic micro-spherical particle and steel surface. Deformed seal shapes, contact and von-Mises stress distributions for various particle sizes and interference are showed. The maximum von-Mises stress within steel shaft was exceeded its yield strength and plastic deformation occurred at steel surface. Therefore, the sealing surface can be also worn by sub-surface fatigue due to wear particles together with well known abrasion. The numerical methods and models used in this paper can be applied in design of dynamic sealing systems, and further intensive studies are required.

Performance Evaluation of PTFE Oil-seal for Automotive Engine Front Part (자동차 엔진 프론트부의 PTFE 오일씰의 성능평가)

  • Choi, Hyun-Jin;Park, Chul-Woo;Lee, Jong-Cheol;Kim, Jong-Gab;Choi, Seong-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.66-71
    • /
    • 2011
  • This study analyzed the mechanical characteristics and evaluated their subsequent performance for two types of seals which reinforced characteristics with lower friction and anti-wear functions among the foremost important features in the automotive engine seals; one with the addition of glass fiber to PTFE(Polytetrafluoro ethylene); the other with the addition of self-lubricant molybdenumin addition to the glass fiber. Based on the configuration design of seal installed to the front part in the automotive engine, this study carried out interpretations on the stress and reaction for those two types of oil seals to compare the maximum stress and contact load generated from the seal steel, rubber and PTFE lip. This study also verified the stress concentration and anti-wear performance through the coefficient of friction, torque and durability test by producing two types of PTFE seals actually.

Optimum micro dimple configuration on the elastomer seal surface (탄성중합체 시일 표면의 미세 딤플에 대한 최적설계)

  • Yoo, Dae-Won
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • The seal plays a role in preventing oil leakage when the lip and the rotating shaft come into contact with the fluid and air pressure. Recently, micro dimples or micro pockets are processed and used on the lubrication surfaces of thrust bearings, mechanical bearings, and piston rings. Compared to a smooth surface, micro dimples reduce friction and increase the life of parts. This paper analyzed various kinds of micro dimple shapes on the sealing surface, i.e. circle, rectangle, triangle, and trapezoid. For this purpose, Introduced the design of experiments to work out a micro dimple configuration, unlikely to be damaged from cracks and low in contact stress. As a result, the triangular dimple showed the best results. Optimal factors were dimple size 0.15 mm, dimple depth 0.0383 mm, dimple density 40%, and the maximum equivalent stress was 9.1455 MPa, and the maximum contact pressure was 9.6612 MPa. This paper analyzed the optimal shape of dimples by finite element analysis. As a research project, experiments and comparative analysis of micro dimple shapes are needed.

A Combination Study on the Elevation Motion Friction Compensation Parameters in Gas Spring (1) (가스 스프링 Elevation 동작 마찰력 보상 변수 조합 연구 (1))

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.657-666
    • /
    • 2017
  • In this study, factor analysis was performed to reduce the friction in the elevation motion of a stand for a 50-inchtelevision. Pipe type cross-section control was used for accurate positioning control of the piston rod. The pipe type was also compared with a labyrinth-type crosssection for the orifice. The frictional force was then reduced using gas seal lip technology. Specifications were chosen, and a volume compensation experiment was carried out using an apparatus for compensating the volume of the cylinder, which is compressed by the volume of the piston rod. Based on CAE and experimental considerations, the labyrinth-type orifice is preferred for reducing friction. For the gas seal lip technology, outer and inner diameters of ${\Phi}20$ and ${\Phi}8$ for the hollow rod were more appropriate when assuming the weight of a 50-inch television to be 30kgf. The third is that the result of total consideration in stability problem and performance of volume compensation for specification decision and volume compensation experiment is determined the final speculation of hollow rod ?8x?4 and riveting system. The last is that the labyrinth orifice is not founded that of the ${\O}0.4{\sim}0.6$ orifice both tests on 300 mm intervals.

The Error Estimation of Radial Contact Force with a Split Shaft Device for Lip Seals (스플릿트축장치를 이용한 립실의 접촉력 측정 오차 평가)

  • 김완두
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.13-17
    • /
    • 1996
  • 립실의 중요 설계 변수인 접촉력의 측정에는 스플릿트축장치가 흔히 사용된다. 축과 립실의 간섭량은 두 개 스플릿트축의 간격으로서 조절된다. 두 축을 초기 위치로부터 측정하고자 하는 임의 위치로 이동시킬 때 정확한 원을 이루지 못해 측정되는 접촉력은 오차를 포함되게 된다. 본 연구에서는 작은 간섭량 범위 내에서 접촉력을 이론적으로 예측할 수 있는 수식을 유도하고 측정 오차 값을 예측하였다. 측정된 립실의 접촉력은 측정 간섭량이 초기간섭량과 일치하는 경우 외에는 항상 오차를 포함하고 있음을 밝혔다. 이 오차는 작은 간섭량 범위 내에서 립실의 재료 특성이나 형상에 무관하며, 10% 이내의 측정 오차 유지를 위해서는 측정 간섭량이 초기 간섭량의 68%에서 187% 범위 내에 들어야 함을 확인하였다.

Analytical Study on the Dynamic Response of Rubber Oil Seals (고무재 오일시일의 응답특성에 관한 해석적 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.42-46
    • /
    • 1996
  • This paper deals with a numerical study of the dynamic response of rubber oil seals for rotating shaft when interference as well as static and dynamic eccentricities are present. In loss of contact conditions the dynamic curve of oil seals is numerically simulated using the FEM package MSC/NASTRAN. The direct integration method is selected to analyze the time domain response of the seal lip-shaft contact. The computed results based on the experimental data indicate that the increased rotating speed may produce the gap separation between lip edge of rubber seals and shaft. These results will be very useful in predicting the dynamic leakage due to contact behaviors of rubber oil seals under dynamic conditions.

Study on the Oil Seal Application Using Polytetrafluoroethylene Composites (Polytetrafluoroethylene 복합재료를 이용한 오일씰 응용에 관한 연구)

  • Ha, Ki-Ryong;Lee, Jong-Cheol;Lee, Young-Seok
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.32-39
    • /
    • 2010
  • The mechanical properties of PTFE 100%, PTFT 90% + carbon black 10%, PTFE 85% + glass fiber 15%, PTFE 80% + glass fiber 15% + molybdenum disulfide ($MoS_2$) 5%, PTFE 75% + glass fiber 25%, and PTFE 75% + carbon black 18% + graphite 7% composites were investigated in this study. The differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine the heat of fusion(${\Delta}H_f$) and thermal stability of the composites. Also, the wear surface and wear volume of PTFE lip seal were examined using the durability test. Wear surface was observed using scanning electron microscope (SEM). It was found that the hardness, wear resistance and durability were enhanced by adding glass fiber and molybdenum disulfide into pure PTFE, but tensile strength and elongation were decreased. According to the experimental results, the composite (PTFE + 15% glass fiber + 5% molybdenum disulfide) showed the best properties for applying to oil-seal among six types of PTFE composites.