• Title/Summary/Keyword: Link Protection

Search Result 149, Processing Time 0.021 seconds

Dynamic Survivable Routing for Shared Segment Protection

  • Tapolcai, Janos;Ho, Pin-Han
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.198-209
    • /
    • 2007
  • This paper provides a thorough study on shared segment protection (SSP) for mesh communication networks in the complete routing information scenario, where the integer linear program (ILP) in [1] is extended such that the following two constraints are well addressed: (a) The restoration time constraint for each connection request, and (b) the switching/merging capacity constraint at each node. A novel approach, called SSP algorithm, is developed to reduce the extremely high computation complexity in solving the ILP formulation. Basically, our approach is to derive a good approximation on the parameters in the ILP by referring to the result of solving the corresponding shared path protection (SPP) problem. Thus, the design space can be significantly reduced by eliminating some edges in the graphs. We will show in the simulation that with our approach, the optimality can be achieved in most of the cases. To verify the proposed formulation and investigate the performance impairment in terms of average cost and success rate by the additional two constraints, extensive simulation work has been conducted on three network topologies, in which SPP and shared link protection (SLP) are implemented for comparison. We will demonstrate that the proposed SSP algorithm can effectively and efficiently solve the survivable routing problem with constraints on restoration time and switching/merging capability of each node. The comparison among the three protection types further verifies that SSP can yield significant advantages over SPP and SLP without taking much computation time.

A 150-Mb/s CMOS Monolithic Optical Receiver for Plastic Optical Fiber Link

  • Park, Kang-Yeob;Oh, Won-Seok;Ham, Kyung-Sun;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • This paper describes a 150-Mb/s monolithic optical receiver for plastic optical fiber link using a standard CMOS technology. The receiver integrates a photodiode using an N-well/P-substrate junction, a pre amplifier, a post amplifier, and an output driver. The size, PN-junction type, and the number of metal fingers of the photodiode are optimized to meet the link requirements. The N-well/P-substrate photodiode has a 200-${\mu}m$ by 200-${\mu}m$ optical window, 0.1-A/W responsivity, 7.6-pF junction capacitance and 113-MHz bandwidth. The monolithic receiver can successfully convert 150-Mb/s optical signal into digital data through up to 30-m plastic optical fiber link with -10.4 dBm of optical sensitivity. The receiver occupies 0.56-$mm^2$ area including electrostatic discharge protection diodes and bonding pads. To reduce unnecessary power consumption when the light is not over threshold or not modulating, a simple light detector and a signal detector are introduced. In active mode, the receiver core consumes 5.8-mA DC currents at 150-Mb/s data rate from a single 3.3 V supply, while consumes only $120{\mu}W$ in the sleep mode.

Implementation of a Network Provisioning System with User-driven and Trusty Protection Management

  • Lim, H.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4720-4738
    • /
    • 2015
  • Proper management on user-driven virtual circuits (VCs) is essential for seamless operation of virtual networks. The Network Provisioning System (NPS) is useful software for creating user-driven VCs automatically and must take fault management into account for physical layer impairments on user-driven VCs. This paper addresses a user-driven and trusty protection management in an NPS with an open standard Network Service Interface (NSI), as a contribution to show how to implement the user-driven and trusty protection management required for user-driven VCs. In particular, it provides a RESTful web service Interface for Configuration and Event management (RICE) that enable management of a distinguished data and control plane VC status between Network Service Agents (NSAs) in the event of a node or link fault and repair in a domain. This capability represents a contribution to show how network and protection events in a domain can be monitored between NSAs (NPSs with the NSI) in multiple domains. The implemented NPS controls and manages both the primary and backup VC with disjoint path in a user-driven manner. A demonstration to verify RICE API's capability is addressed for the trusty protection in the dynamic VC network.

Dual Process Linear Protection Switching Method Supporting Node Redundancy (노드 이중화를 위한 이중 프로세스 선형 보호 절체 방법)

  • Kim, Dae-Ub;Kim, Byung Chul;Lee, Jae Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.26-37
    • /
    • 2016
  • The core technologies of the current transport network are OAM and protection switching to meet the sub-50ms protection switching time via a path redundancy when a link or node failure occurs. The transport networks owned by public network operators, central/local governments, and major enterprises are individually configured and managed with service resiliency in each own protected sub-network. When such networks are cascaded, it is also important to provide a node resiliency between two protected sub-networks. However, the linear protection switching in packet transport networks, such as MPLS-TP and Carrier Ethernet, does not define a solution of dual node interconnection. Although Ethernet ring protection switching covers the dual node interconnection scheme, a large amount of duplicated data frames may be flooded when a failure occurs on an adjacent (sub) ring. In this paper, we suggest a dual node interconnection scheme with linear protection switching technology in multiple protected sub-networks. And we investigate how various protected sub-network combinations with a proposed linear or ring protection process impact the service resiliency of multiple protected sub-networks through extensive experiments on link and interconnected node failures.

Development of Current Limiting COS Fuse Link with Improved Overcurrent and Protection Coordination performance (과전류 차단과 보호협조 성능이 향상된 한류형 COS 퓨즈링크 개발)

  • Kim, Youn-Hyun;Kim, Young-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.129-136
    • /
    • 2020
  • A Cut Out Switch (COS) is used for line protection and pole transformer protection in power systems. The COS used to protect the pole transformer is installed on the power side of the pole transformer to protect the electric equipment from fault currents. The COS is composed largely of a body and a fuse holder, and when the fault current is energized, the element of the fuse link in the fuse holder is melted to block the fault current. The arc generated when the COS fuse link is blown causes fire and noise, causing discomfort to residents in the surrounding area, and the arc flame can cause secondary damage to the peripheral device. In this study, a current-limiting COS fuse with improved overcurrent blocking performance rather than explosion type was developed to solve the arc and noise problems during COS operation. The overcurrent breaking performance of the current-limiting COS improves the reliability by developing a striker and COS fuse bracket. In addition, this study aimed to verify the performance of the developed current-limiting COS fuse through a test at an authorized institution.

Sub-Network based Dynamic Restoration Schemes and Its Characteristics on GMPLS Network (GMPLS에서 Sub-Network을 이용한 동적 복구 방식 및 특성)

  • 권호진;이상화;김영부;한치문
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.5
    • /
    • pp.53-61
    • /
    • 2004
  • This paper proposes two types of sub-network based on dynamic restoration schemes to improve survivability of GMPLS networks and analyzes characteristics of these two schemes. The first proposed scheme divides with a whole GMPLS network into several sub-networks, applies a mixture of both restoration and protection methods according to fault location. The other scheme divides a whole GMPLS network into primary and secondary sub-networks, applies a restoration method in each sub-network according to fault location. In our simulation, we evaluate the performances of network resource utilization, restoration success rate, and mean restoration time and conduct its comparative analysis with conventional schemes. The simulation results show that the efficiency of network resource utilization in the proposed schemes is increased as compared with conventional restoration schemes (l+l, 1:1, 1:N) in case of single-failed link. By contrast, we found that the performances of restoration success rate and mean restoration time in case of multi-failed link is lower than conventional restoration schemes. However, the probability that multi-failed link is occurred is very low so that the problem in practical GMPLS network is negligible.

On Finding the Multicast Protection Tree Considering SRLG in WDM Optical Networks

  • Li, Yonggang;Jin, Yaohui;Li, Lemin;Li, Longjiang
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.517-520
    • /
    • 2006
  • In this letter, a new sharing mechanism, SRLG sharing, is proposed, which allows the links of the same shared risk link group (SRLG) in a primary light tree to share protections in WDM optical networks. In previous studies, how to share spare resources with SRLG constraints has not been studied in multicast optical networks. In this letter, considering SRLG sharing, we propose a novel algorithm -multicast with SRLG sharing (MSS)- to establish a protection light tree. Finally, the algorithm MSS and the algorithm multicast with no SRLG sharing (MNSS) are compared through a simulation to show that our new sharing scheme of SRLG sharing is more efficient than that of no SRLG sharing in terms of spare resource utilization and blocking probability.

  • PDF

Flush Optimizations to Guarantee Less Transient Traffic in Ethernet Ring Protection

  • Lee, Kwang-Koog;Ryoo, Jeong-Dong
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.184-194
    • /
    • 2010
  • Ethernet ring protection (ERP) technology, which is defined in ITU-T Recommendation G.8032, has been developed to provide carrier grade recovery for Ethernet ring networks. However, the filtering database (FDB) flush method adopted in the current ERP standard has the drawback of introducing a large amount of transient traffic overshoot caused by flooded Ethernet frames right after protection switching. This traffic overshooting is especially critical when a ring provides services to a large number of clients. According to our experimental results, the traditional FDB flush requires a link capacity about sixteen times greater than the steady state traffic bandwidth. This paper introduces four flush optimization schemes to resolve this issue and investigates how the proposed schemes deal with the transient traffic overshoot on a multi-ring network under failure conditions. With a network simulator, we evaluate the performance of the proposed schemes and compare them to the conventional FDB flush scheme. Among the proposed methods, the extended FDB advertisement method shows the fastest and most stable protection switching performance.

Analysis of the Bandwidth Consumed by Restoration Paths for Service Guarantee in the Protection Switching Scheme (보호 스위칭에 의한 경로 설정에 있어서 서비스 보장을 위한 복구 경로의 소비 대역 분석)

  • Lee, Hwang-Kyu;Hong, Sug-Won
    • The KIPS Transactions:PartC
    • /
    • v.10C no.2
    • /
    • pp.155-162
    • /
    • 2003
  • Fast restoration time and service guarantee are the important goals to achieve the network reliability. In the protection switching scheme, one way to guarantee service fro an application session if a network happens to fail is to establish the restoration path that amounts to the same bandwidth of the working path of the session at the same time. When we setup the restoration path, we can reduce the bandwidth consumption by the restoration path if the path can share the bandwidth required by the other paths. This paper explains the methods how to determine the shared bandwidth of the restoration path in the protection switching scheme, given the maximum bandwidth assigned to a link along the working path. We point out that such sharing algorithm can not reduce the bandwidth consumption by the restoration paths in some cases, which contradict the general conception. We explain why this can happen, and show the simulation results in real network topologies to prove our arguments. We explain the reason of the failure of the sharing effect by the simple sharing algorithm. Finally we propose the way of how we can overcome the failure of the sharing effect, using the complete sharing algorithm based on the link database and showing the results.

QoS-Aware Approach for Maximizing Rerouting Traffic in IP Networks

  • Cui, Wenyan;Meng, Xiangru;Yang, Huanhuan;Kang, Qiaoyan;Zhao, Zhiyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4287-4306
    • /
    • 2016
  • Network resilience provides an effective way to overcome the problem of network failure and is crucial to Internet protocol (IP) network management. As one of the main challenges in network resilience, recovering from link failure is important to maintain the constancy of packets being transmitted. However, existing failure recovery approaches do not handle the traffic engineering problem (e.g., tuning the routing-protocol parameters to optimize the rerouting traffic flow), which may cause serious congestions. Moreover, as the lack of QoS (quality of service) restrictions may lead to invalid rerouting traffic, the QoS requirements (e.g., bandwidth and delay) should also be taken into account when recovering the failed links. In this paper, we first develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures, with which we can choose reliable backup paths (BPs). Then we construct a mathematical model for the failure recovery problem, which takes maximum rerouting traffic as the optimizing objective and the QoS requirements as the constraints. Moreover, we propose a heuristic algorithm for link failure recovery, which adopts the improved k shortest path algorithm to splice the single BP and supplies more protection resources for the links with higher priority. We also prove the correctness of the proposed algorithm. Moreover, the time and space complexity are also analyzed. Simulation results under NS2 show that the proposed algorithm improves the link failure recovery rate and increases the QoS satisfaction rate significantly.