• Title/Summary/Keyword: Link Capacitor

Search Result 254, Processing Time 0.024 seconds

Resonance initial current compensation for Resonant DC-Link inverter (공진 DC-Link 인버터의 공진 초기전류의 보상에 관한 연구)

  • Kwak, Dong-Kurl;Suh, Ki-Young;Kwon, Soon-Kurl;Lee, Hyun-Woo;Woo, Jung-ln
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1136-1141
    • /
    • 1992
  • This paper proposes a control technique to obtain high frequency quasi sinusoidal DC-Link waveform permitting zero-voltage-switching(ZVS). This operation results in reduction of commutation stress and switching losses in the power devices because they cause no switching loss in principle. But in existing control methods, the resonant capacitor voltage is not frequently made of zero-cross oscillation. We propose an optimum control stratege which can sustain oscillation and keep the capacitor voltage at an allowable level. Some experimental results are included to confirm the validity of the analytical results.

  • PDF

A Study on Current Source GTO Inverter by DC Link Inductance (직류 링크 인덕터에 의한 전류형 GTO 인버터의 특성고찰)

  • Choi, Sang-Won;Kim, Jin-Pyo;Yoon, Yong-Ki;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2169-2171
    • /
    • 1998
  • In order to improved the three phase GTO CSI of high efficiency IM drive with low loss commutation and snubber energy, we studied the energy recovery circuit to recover stored energy in clamping capacitor, dc link inductor and snubber capacitor, used an induction motor as the load of inverter. Specially, we investigated how dc input power is increased or decreased according to size of dc link inductor. The validity of this system is proved through experiment.

  • PDF

A study on neutral-point voltage balance with harmonic component injection for single phase three-level NPC converter (고조파 주입을 통한 단상 3레벨 NPC 컨버터 중성점 전압 밸런싱 연구)

  • Kang, Kyoung Pil;Kim, Ho-Sung;Cho, Jintae;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.316-317
    • /
    • 2018
  • This paper propse the DC link capacitor voltage balancing control for three level neutral point clamped converter with harmonic component injection method. The injcetion voltage consists of harmonic component and DC link capacitor voltage difference. Theoretical analysis is provided to balance the DC link voltage, and it shows that harmonic component compensates the unbalanced condition between the capacitors. Both simulations and experiments are carried out to show that the voltage unbalance have been decreased by the proposed method.

  • PDF

Development of Boost Chopper with Built New Renewable Energy in Grid-Connected Distributed Power System (승압 초퍼 기능이 내장된 새로운 태양광 발전용 파워컨디셔너의 개발)

  • Mun, Sang-Pil;Lee, Su-Haeng;Kim, Young-Mun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.361-367
    • /
    • 2014
  • This paper is related to a new solar power conditioner for a built-in step-up chopper function. In the first step-up chopper proposed solar PV power conditioner for mutually connected in series with the input voltage of the bypass diodes are respectively connected to the positive terminal should install the mutual boosting chopper diode connected in series with the boost chopper switching element between the two power supply and at the same time the first and the second was connected to a second diode and a resonance inductor and a snubber capacitor in series with each other. And the common connection point between the bypass diode and the step-up chopper and the step-up chopper diode common connection point of the switching elements of the input voltage was set to the boost inductor for storing energy. In addition, between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point of the first auxiliary diode and the second common connection point of the auxiliary diode was provided, the resonance capacitor. Between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point and the common connection point of the resonance inductor snubber capacitor and connecting the third secondary diode, between two power supply lines is characterized by configuring the DC link capacitor bus lines in parallel. Therefore, it is possible to suppress the switching loss through, DC link bus lines, as well as there could seek miniaturization and weight reduction of the power conditioner itself by using a common capacitor of the non-polar non-polar electrolytic capacitor having a capacitor, the service life of the circuit can be extended and it is possible to greatly reduce the loss can be greatly improve the reliability of the product and the operation of the product itself.

Nonlinear Control of Three-phase Split-Capacitor Inverters under Unbalanced and Nonlinear Load Conditions

  • Nguyen, Qui Tu Vo;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.52-53
    • /
    • 2012
  • This paper presents a new control scheme for a three-phase split DC-link capacitor inverter as an AC power supplies. The proposed control method can maintain the balanced sinusoidal output voltage under unbalanced and nonlinear load conditions. The validity of the control method has been verified by simulation results.

  • PDF

Sensorless measurement of the DC link capacitor current of three-phase inverter (3상 인버터의 DC 링크 커패시터 전류의 센서리스 측정)

  • Qiu, Xiao-Dong;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.205-206
    • /
    • 2012
  • A general method to measure the inverter DC bus capacitor current is described. It is an indirect estimated method. By measuring the input and out voltage and current can calculate DC bus capacitor current. This paper will develope the theory that describes the indirect method. It will discuss and verify the feasibility of this approach through the use of the PSIM. Using SPWM control method will be simulated and compared.

  • PDF

Life Estimation of Electrolytic Capacitors in Inverters (인버터용 전해커페시터의 수명 추정)

  • Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.243-245
    • /
    • 2000
  • In general, aluminum electrolytic capacitors are used in the DC link of PWM inverters fur ac motor drives. The capacitor usually has the shortest lifetime in the system and then determines the lifetime of the inverter system. In this paper, a method of capacitor lifetime estimation is proposed by using an ESR(equivalent series resistance) model and a heat transfer model of capacitor, from which internal operating temperature is estimated. Then, the lifetime is predicted by Arrhenius's equation. A practical example is presented.

  • PDF

Series-Parallel Connected Capacitor Type Boost Converter for a Single-Phase SRM

  • Lee, Dong-Hee;Liang, Jiang;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.388-395
    • /
    • 2010
  • An active boost converter for a single phase SRM using series-parallel connected capacitors is proposed in this paper. The proposed active boost converter has two diodes and one power switch with an anti-parallel diode and one additional boost capacitor. The additional boost capacitor could be series or parallel connected to the dc-link capacitor to produce proper excitation and demagnetization voltage. The proposed active boost converter can easily achieve a fast excitation and demagnetization from the capacitor connection. In this paper, series and parallel connected converters are reviewed, and the detailed operating modes as well as the voltage characteristics of the proposed converter are analyzed. The simulation and experimental results shows the effectiveness of the proposed active boost converter.

Three-phase current type PWM converter using resonant DC Link snubber (공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터)

  • Suh, Ki-Youn;Lee, Hyun-Woo;Lee, Soo-Heun;Mun, Sang-Pil;Kim, Young-Mun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1015-1019
    • /
    • 2001
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current-fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

  • PDF

analysis of three-phase current type PWM converter using resonant DC Link snubber (공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터의 해석)

  • Lee, S.H.;Mun, S.P.;Suh, K.Y.;Kim, Y.M.;Kang, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.55-59
    • /
    • 2002
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current -fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

  • PDF