• Title/Summary/Keyword: Lining thickness

Search Result 131, Processing Time 0.025 seconds

Simplified nonlinear simulation for composite segmental lining of rectangular shield tunnels

  • Zhao, Huiling;Liu, Xian;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.513-522
    • /
    • 2022
  • Steel-concrete composite segments replacing the conventional reinforced concrete segments can provide the rectangular shield tunnel superiorities on bearing capacity, ductility and economy. A simplified model with high-efficiency on computation is proposed for investigating the nonlinear response of the rectangular tunnel lining composed of composite segments. The simulation model is developed by an assembly of nonlinear fiber beam elements and spring elements to express the transfer mechanism of forces through components of composite segments, and radial joints. The simulation is conducted with the considerations of material nonlinearity and geometric nonlinearity associated with the whole loading process. The validity of the model is evaluated through comparison of the proposed nonlinear simulation with results obtained from the full-scale test of the segmental tunnel lining. Furthermore, a parameter study is conducted by means of the simplified model. The results show that the stiffness of the radial joint at haunch of the ling and the thickness of inner steel plate of segments have remarkable influence on the behaviour of the lining.

Study on 3-D Physical Modeling for the Inspection of Tunnel Lining Structure by using Ultrasonic Reflection Method (터널 지보구조 진단을 위한 초음파 반사법을 이용한 3차원 모형실험 연구)

  • 김중열;김유성;신용석;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.221-228
    • /
    • 2002
  • Thickness of concrete lining, voids at the back of lining or shotcrete are very important elements for inspecting the safety of tunnels. Therefore, the inspection of tunnel lining structure means to investigate the inner layer boundaries of the structure. For this purpose, seismic reflection survey is the most desirable method if it works in good conditions. However, the conventional seismic reflection method can not be properly used for investigating thin layers in the lining structure. In other words, to detect the inner boundaries, it is desirable for the wavelength of source to be less than the thickness of each layer and for the receiver to be capable of detecting high frequency(ultrasonic) signals. To this end, new appropriate source and receiver devices should be developed above all for the ultrasonic reflection survey. This paper deals primarily with the development of source and receiver devices which are essential parts of field measuring system. Interests are above all centered in both the radiation pattern, energy, frequency content of the source and the directional sensitivity of the receiver. With these newly devised ones, ultrasonic physical modeling has been performed on 3-D physical model composed of bakelite, water-proof and concrete, The measured seismograms showed a clear separation of wave arrivals reflected from each layer boundary. Furthermore, it is noteworthy that reflection events from the bottom of concrete below water-proof could be also observed. This result demonstrates the usefulness of the both devices that can be applied to benefit the ultrasonic reflection survey. Future research is being focus on dealing with at first an optimal configuration of source and receiver devices well coupled to tunnel wall, and further an efficient data control system of practical use.

  • PDF

Study on the optimal construction of a concrete lining in a weathered rock (풍화암지반에 시공되는 콘크리트라이닝의 적정시공에 관한 연구)

  • Kim, Hyeongkeon;Lee, Chul;Lee, Sun-Woo;Park, Jun-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.33-47
    • /
    • 2015
  • Concrete lining in tunnel construction is used as secondary support for downward loads when primary support decays. The use of concrete lining varies greatly depending on the intentions of engineer and/or client. An engineer uses much smaller deformation modulus which determines the concrete lining thickness than of a pattern 3, when supporting patterns 4 and 5 are used in a weathered rock and soil. Considering these conditions, this study intends to suggest optimal construction procedures through a back analysis using a computer program(MIDAS-civil). Cases of Seoul Subway System line${\bigcirc}{\bigcirc}$ zone${\bigcirc}{\bigcirc}$ were selected to be examined for this study. The results show that it is possible to reduce the thickness of concrete lining. When results from this study were applied to Seoul Metropolitan subway construction projects, it is expected to bring economic benefits.

Development of design charts for concrete lining in a circular shaft (원형수직구 콘크리트라이닝 단면설계도표 개발)

  • Shin, Young-Wan;Kim, Sung-Soo;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.165-175
    • /
    • 2010
  • Recently, requirement of a long subsea tunnel has increased due to political, economical and social demands such as saving of distribution costs, improvement of traffic convenience, and regional development. Road and railroad tunnel need a shaft for construction and ventilation because of increase of tunnel length. Shaft diameter, lining sectional thickness and rebar quantity have to be determined for design of concrete lining in the shaft. A lot of structural analyses are needed for optimal design of concrete lining considering shaft diameter, load conditions and ground conditions. Design charts are proposed by structural analyses for various conditions in this study. A sectional thickness and rebar quantity can be easily determined using the proposed design charts.

Case Studies for the Stress Measurements on the Shotcrete Tunnel Lining (터널에서의 숏크리트 응력 측정 사례 연구)

  • Kim, Hak Joon;Kim, Mi-Ran
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.81-89
    • /
    • 2014
  • Stress measurements of shotcrete lining were performed to evaluate the stability of the primary lining and to determine the thickness and the construction timing of the secondary lining. The current situation of stress measurements of shotcrete and problems related to judging the safety of shotcrete linings are presented, based on the results of several case studies. An improved method of performing stress measurements on shotcrete lining is also presented. In evaluating the safety of shotcrete lining, the use of absolute values of measured stresses would improve the reliability of the measurements.

A STUDY ON THE COLOR CHANGES ACCORDING TO THE AMOUNT OF REMAINING TOOTH MATERIAL (치질(齒質) 잔존량(殘存量)에 따른 색조변화(色調變化)에 관(關)한 연구(硏究))

  • Hoh, Sung-Yun;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.1
    • /
    • pp.131-147
    • /
    • 1986
  • The purpose of this study was to observe the color matching of lining or filling materials according to the remaining tooth material. Twenty-seven freshly extracted human central incisors were used in this experiments. The teeth were stored in saline solution at room temperature after extraction. All teeth were cut parallel to the tangent to height of contour on labial surface from the lingual surface until the pulp were completely removed. Then 27 teeth were devided into 0.5mm, 1.0mm and 1.5mm reduction groups according to the thickness of cutting the lingual surfaces of teeth. The specimens of control group were three teeth of 27 teeth with cutting the lingual surface same mode as above described. In the specimens of experimental groups, 8 kinds of lining and filling materials; FUJI IONOMER TYPE II (G-C Co. Japan), LINING CEMENT (G-C Co. Japan), Dycal (Caulk, U.S.A.), CLEARFIL F II (Kuraray Co. Japan), Crown Bridge & Inlay Cement (G-C Co. Japan), Copalite (Harry J. Bosworth Co. U.S.A.), HY-BOND (G-C Co. Japan) and LIV-CENERA (G-C Co. Japan); applied on the back of 24 teeth with 0.5mm, 1.0mm and 1.5mm cut thickness of lingual surfaces. Three teeth of control group did not applied linging or filling materials on the back of 3 kinds of different thickness of cutting the lingual surfaces. The absorbances of total 27 specimens were obtained by reflection spectrophotometer. (Cary 17 D, Varian Co, U.S.A.) The following conclusions were drawn from above the results; 1. The absorbance patterns in both experiment and control groups were gradually decreased with increasing wavelength of spectra. 2. The absorbance patterns were not decreased in relation to the kinds of lining or filling materials, but the amount of the remaining tooth materials. 3. In 0.5mm reduction group, FUJI IONOMER TYPE II, LINING CEMENT, LIV-CENERA and Copalite applied on the back of cut lingual surface showed similar absorbance patterns as control group. 4. The specimens which were reduced up to 1.0mm thickness and lined with FUJI IONOMER TYPE II and LINING CEMENT showed the comparable absorbance patterns to the control group. 5. In case of HY-BOND application after 1.5mm reduction were observed the similar absorbance pattern as compared with control group. 6. When Dycal, CLEARFIL and Crown Bridge & Inlay Cement were applied to cut teeth surfaces, there were much differences of absorbance between control groups and experimental groups.

  • PDF

Section enlargement by reinforcement of shotcrete lining on the side wall of operating road tunnel (운영중인 도로터널의 측벽하부 숏크리트 보강에 의한 단면확대)

  • Kim, Dong-Gyou;Shin, Young-Wan;Shin, Young-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.637-652
    • /
    • 2012
  • The protector with the shape of '${\sqcap}$' in cross section can be set up in the tunnel, which can be constructed for enlargement of cross section, to keep traffic flow in the tunnel. It is impossible to install the rockbolt in the side wall of tunnel due to a limited space between the protector and cutting surface of side wall. The objective of this study is to suggest the optimum thickness of shotcrete lining without rockbolt on the side wall and to evaluate the stability of tunnel enlarged. Numerical analysis was performed to evaluate the displacement at the center of tunnel, the convergence of tunnel, and the stress in shotcrete lining in 4-lane NATM road tunnel enlarged from 3-lane NATM road tunnel. The vertical displacement at the center of tunnel and the convergence of crown in the tunnel with rockbolt in the side wall were almost similar to those in the tunnel without rockbolt in the side wall. The convergence of bench/invert and the stress in shotcrete lining without rockbolt on the side wall were greater maximum 0.57 mm and 1,300 kN/$m^2$ than those with rockbolt in the side wall. The increased convergence and the stress in shotcrete lining can be reduced in incerasing of thickness of shotcrete lining about 20% (5 cm) of standard thickness, 25 cm, of shotcrete lining.

Vibration analysis of mountain tunnel lining built with forepoling method

  • Gao, Yang;Jiang, Yujing;Du, Yanliang;Zhang, Qian;Xu, Fei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.583-590
    • /
    • 2018
  • Nowadays, many tunnels have been commissioned for several decades, which require effective inspection methods to assess their health conditions. The ambient vibration test has been widely adopted for the damage identification of concrete structures. In this study, the vibration characters of tunnel lining shells built with forepoling method was analyzed based on the analytical solutions of the Donnell-Mushtari shell theory. The broken rock, foreploing, rock-concrete contacts between rock mass and concrete lining, was represented by elastic boundaries with normal and shear stiffness. The stiffness of weak contacts has significant effects on the natural frequency of tunnel lining. Numerical simulations were also carried out to compare with the results of the analytical methods, showing that even though the low nature frequency is difficult to distinguish, the presented approach is convenient, effective and accurate to estimate the natural frequency of tunnel linings. Influences of the void, the lining thickness and the concrete type on natural frequencies were evaluated.

A study on behavioral characteristics of concrete lining based on the equations of relaxed rock loads (이완하중 산정식에 따른 콘크리트라이닝 거동특성에 관한 연구)

  • Kim, Sang-Hwan;Park, Inn-Joon;Moon, Hoon-Ki;Shin, Yong-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.443-450
    • /
    • 2010
  • A concrete lining of NATM tunnel had been considered as interior materials. But recently we consider it as structural materials. Therefore we must consider various loads. Relaxed rock load is a main load which decides thickness and reinforcement presence of concrete lining. In practice conservatively, Terzaghi's rock load theory has been accepted to estimate relaxed rock loads in urban subway tunnel design. This study investigates the equations of relaxed rock loads used in the design of NATM concrete lining. Structural analysis are executed based on various equations of relaxed rock loads, and concrete lining forces are compared.

Thickness assessment of tunnel concrete lining using wavelet transform (웨이블릿 변환을 이용한 터널 콘크리트 라이닝의 두께 검사법)

  • Lee, In-Mo;Cheon, Il-Soo;Hong, Eun-Soo;Lee, Joo-Gong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.13-21
    • /
    • 2003
  • To investigate the safety and stability of a concrete lining, numerous studies have been conducted over the years and several methods have been developed. Most signal processing techniques of NDT have been based on Fourier analysis. However, the application of Fourier analysis to analyze recorded vibrational signal shows results in the frequency domain only, and it is not enough to analyze transient waves precisely. In this study, Wavelet theory was employed for the analysis of non-stationary wave induced by mechanical impact on tunnel concrete lining. The Wavelet transform of transient signals provides a method for mapping the frequency spectrum as a function of time. To verify the availability of Wavelet transform as a time-frequency analysis tool, model experiments have been conducted and the thickness of the concrete lining was estimated based on the proposed theory. From this study, it was found that the contour map by Wavelet transform provides more distinct results than the power spectrum by Fourier transform and it was also found that Wavelet transform was also an effective tool for the analysis of dispersive waves in tunnel concrete linings.

  • PDF