• 제목/요약/키워드: Lining material

검색결과 234건 처리시간 0.021초

폴리머 시멘트 모르타르를 이용한 철근콘크리트 흄관 라이닝에 관한 연구 (A Study on the Lining of Reinforced Concrete Pipe Using Polymer-Modified Mortar)

  • 김영집;김한엽;조영구;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.333-338
    • /
    • 2000
  • At present, reinforced concrete pipe has been widely used as drain pipe. However, many reinforced concrete pipe is exposed at deteriorated environment by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar on the development in durability of reinforced concrete pipe. Polymer-modified mortars ate prepared with various polymer typer as cement modifier and polymer-cement ratio and rested for compressive and flexural strengths, adhesion in tension, acid resistance test, freezing and thawing test, and lining test of product in the field. From the rest results, it is apparent that polymer-modified mortars have good mechanical properties and durability as lining material. In practice, all polymers can be used as lining materials for reinforced concrete pip, and type of polymer, and polymer-cement ratio and curing conditions are controlled for good lining product.

  • PDF

개착식 터널의 라이닝에 작용하는 토압경감대책에 관한 실험적 연구 (An experimental study on the reduction method of earth pressure acting on the cut-and-cover tunnel lining)

  • 김상윤;임종철;박이근;페르디난드 이 바우티스타
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.952-957
    • /
    • 2004
  • Cut and Cover Method is generally used in shallow tunnels and tunnel entrances with thin soil cover. In this type of cons0truction, backfilling is considered to be the most important process. In this process even though the backfill material is thoroughly compacted, compaction and self-weight due to vehicular vibration and pressure exerted by the soil cause the backfill material to undergo self-compression which leads to settlement. The settlement of the backfill material subjects the tunnel lining under excessive earth pressure which cause cracking and deformation. In the model test performed installation of geotextile on the sides and top of the tunnel was able to reduce the earth pressure acting on the tunnel lining.

  • PDF

국내 재래식 터널의 변상현황과 배면공동 보강 사례연구 (A Case Study on Deformation Conditions and Reinforcement Method of Cavity behind the Lining of Domestic Old Tunnel)

  • 김영묵;임광수;마상준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1343-1350
    • /
    • 2005
  • In this study, the whole deformation conditions of domestic old tunnels and reinforcement methods for deformation tunnels were investigated and analysed, and the present conditions, occurrence cause and reinforcement methods of cavity behind the tunnel lining were investigated and analysed comprehensively. The deformation causes of domestic old tunnels could be classified in three kinds : change of earth pressure operating tunnel ground, material problem of concrete lining, mistake of design and construction. As a result of analysis, the tunnel deformation was occurred by not specific cause but various cause As a result of investigation for 455 domestic tunnel data, more than 70% of the tunnel deformation was related to leakage and the other deformation cause also accompanied leakage mostly. An applied reinforcement method was related to leakage and flood prevention measures, but application of reinforcement method for boundary area between tunnel and ground and tunnel periphery which influence on the tunnel stability was still defective. The cavity of domestic old tunnel occupied about 16% of the total tunnel length and about 68% of cavity was located in the crown of tunnel, and besides, the occurrence cause of cavity was analysed to design, construction and management cause. The filling method for cavity using filling material was comprehensively appling to cavity behind tunnel lining.

  • PDF

Flowability and Strength Properties of High Flowing Self-Compacting Concrete Using for Tunnel Lining

  • Choi, Yun-Wang;Choi, Wook;Kim, Byoung-Kwon;Jung, Jea-Gwone
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.145-152
    • /
    • 2008
  • So far, there has been no study of the concrete to strengthen in the lining of the tunnels, except for the study of the stability of subgrade and the tunnel construction technologies. In the existing concrete work for tunnel lining, lots of problems happen due to the partial compaction and the material segregation after casting concrete. Accordingly, the aim of this study is to improve economic efficiency and secure durability through the improvement of the construction performance and quality of the concrete for the tunnel lining among the civil structures. Therefore, the compactability and strength properties of the High Flowing Self-Compacting Lining Concrete (HSLC) are evaluated to develop the mixing proportion for design construction technology of HSLC that can overcome the inner cavity due to the reduced flowability and unfilled packing, which has been reported as the problem in the existing lining concrete. The result of the evaluation shows that the ternary mix meets the regulations better than the binary mix. Consequently, it has been judged applicable to the cement for tunnel lining.

Numerical analysis of tunnel in rock with basalt fiber reinforced concrete lining subjected to internal blast load

  • Jain, Priyanka;Chakraborty, Tanusree
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.399-406
    • /
    • 2018
  • The present study focuses on the performance of basalt fiber reinforced concrete (BFRC) lining in tunnel situated in sandstone rock when subjected to internal blast loading. The blast analysis of the lined tunnel is carried out using the three-dimensional (3-D) nonlinear finite element (FE) method. The stress-strain response of the sandstone rock is simulated using a crushable plasticity model which can simulate the brittle behavior of rock and that of BFRC lining is analyzed using a damaged plasticity model for concrete capturing damage response. The strain rate dependent material properties of BFRC are collected from the literature and that of rock are taken from the authors' previous work using split Hopkinson pressure bar (SHPB). The constitutive model performance is validated through the FE simulation of SHPB test and the comparison of simulation results with the experimental data. Further, blast loading in the tunnel is simulated for 10 kg and 50 kg Trinitrotoluene (TNT) charge weights using the equivalent pressure-time curves obtained through hydrocode simulations. The analysis results are studied for the stress and displacement response of rock and tunnel lining. Blast performance of BFRC lining is compared with that of plain concrete (PC) and steel fiber reinforced concrete (SFRC) lining materials. It is observed that the BFRC lining exhibits almost 65% lesser displacement as compared to PC and 30% lesser displacement as compared to SFRC tunnel linings.

Hydro-mechanical interaction of reinforced concrete lining in hydraulic pressure tunnel

  • Wu, He-Gao;Zhou, Li;Su, Kai;Zhou, Ya-Feng;Wen, Xi-Yu
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.699-712
    • /
    • 2019
  • The reinforced concrete lining of hydraulic pressure tunnels tends to crack under high inner water pressure (IWP), which results in the inner water exosmosis along cracks and involves typical hydro-mechanical interaction. This study aims at the development, validation and application of an indirect-coupled method to simulate the lining cracking process. Based on the concrete damage plasticity (CDP) model, the utility routine GETVRM and the user subroutine USDFLD in the finite element code ABAQUS is employed to calculate and adjust the secondary hydraulic conductivity according to the material damage and the plastic volume strain. The friction-contact method (FCM) is introduced to track the lining-rock interface behavior. Compared with the traditional node-shared method (NSM) model, the FCM model is more feasible to simulate the lining cracking process. The number of cracks and the reinforcement stress can be significantly reduced, which matches well with the observed results in engineering practices. Moreover, the damage evolution of reinforced concrete lining can be effectively slowed down. This numerical method provides an insight into the cracking process of reinforced concrete lining in hydraulic pressure tunnels.

기능성 배접지의 보존 특성 분석 -호분지- (Conservation Properties of Chalk Added Functional Lining Papers)

  • 최경화;박지희;서진호
    • 보존과학연구
    • /
    • 통권31호
    • /
    • pp.79-88
    • /
    • 2010
  • Paper cultural heritages experience chemical and physical deterioration due to various factors including preservation environments and the property of paper materials1). Thus, it is important to develop optimal preservation and restoration methods for the damaged paper cultural heritages. Currently, lining is a popular treatment for the restoration of paper cultural heritages in Korea. Since lining paper is a layer of paper directly attached to the inside of cultural heritages for protection, understanding of the preservation properties of lining paper is primarily needed in order to devise the better preservation methods. The main material of lining paper is the paper mulberry, but additives such as chalk and white clay is sometimes used to enhance the preservation properties of lining paper. To date, the properties of the functional lining paper containing these additives have been not fully understood yet. In this study, dry heating aging at $105^{\circ}C$ and biological aging by the Aspergillus versicolor and Penicillium polonicum for the lining paper, which is made from paper mulberry and the chalk, are carried out to evaluate changes in their preservation properties by these aging factors. As a result, it is found that the functional lining paper containing 25.1% of chalk can control the growth of fungi, while the paper containing 32.7% of chalk do not show any protection effect. However, the functional lining paper added by chalk is more aged than the lining paper made from paper mulberry by dry heating accelerated aging.

  • PDF

Cause Analysis for a Lining Damage in Sea Water System Piping Installed in a Korean Industrial Plant

  • Hwang, K.M.;Park, S.K.
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Many Korean industrial plants including nuclear and fossil power plants use seawater as the ultimate heat sink to cool the heat generated by various facilities. Owing to the high corrosivity of seawater, facilities and piping made of metal material in contact with seawater are coated or lined with polymeric materials to avoid direct contact with seawater. However, polymeric materials used as coating and lining have some level of permeability to water and are degraded over time. Korean industrial plants have also experienced a gradual increase in the frequency of damage to pipes in seawater systems due to prolonged operating periods. In the event of a cavitation-like phenomenon, coating or lining inside the piping is likely to be damaged faster than expected. In this paper, the cause of water leakage due to base metal damage caused by the failure of the polyester lining in seawater system piping was assessed and the experience with establishing countermeasures to prevent such damage was described.

Simplified nonlinear simulation for composite segmental lining of rectangular shield tunnels

  • Zhao, Huiling;Liu, Xian;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.513-522
    • /
    • 2022
  • Steel-concrete composite segments replacing the conventional reinforced concrete segments can provide the rectangular shield tunnel superiorities on bearing capacity, ductility and economy. A simplified model with high-efficiency on computation is proposed for investigating the nonlinear response of the rectangular tunnel lining composed of composite segments. The simulation model is developed by an assembly of nonlinear fiber beam elements and spring elements to express the transfer mechanism of forces through components of composite segments, and radial joints. The simulation is conducted with the considerations of material nonlinearity and geometric nonlinearity associated with the whole loading process. The validity of the model is evaluated through comparison of the proposed nonlinear simulation with results obtained from the full-scale test of the segmental tunnel lining. Furthermore, a parameter study is conducted by means of the simplified model. The results show that the stiffness of the radial joint at haunch of the ling and the thickness of inner steel plate of segments have remarkable influence on the behaviour of the lining.

Study on Tribology Characteristics of Friction Material Based on Tribo-Systems

  • Yang, Zhao-Jian;Fang Ren;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.27-30
    • /
    • 2003
  • The basic principles of tribo-systems and study method based on tribe-systems are introduced in the paper, Based on the viewpoint of tribe-systems, the experiment on tribology characteristics of friction lining material in multi-rope friction hoist is carried out. The research result shows: tribology characteristics of friction material are not its inherent characteristic but system characteristics of the tribo-systems, the“sliding-rope”of multi-rope friction hoist can be divided into“safety sliding-rope”and“fault sliding-rope”, study on friction material only based on characteristic of system where friction material exists possesses practical significance.