• Title/Summary/Keyword: Linearly negatively quadrant dependent

Search Result 2, Processing Time 0.02 seconds

On the Probability Inequalities under Linearly Negatively Quadrant Dependent Condition

  • Baek, Jong Il;Choi, In Bong;Lee, Seung Woo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.545-552
    • /
    • 2003
  • Let X$_1$, X$_2$, … be real valued random variables under linearly negatively quadrant dependent (LNQD). In this paper, we discuss the probability inequality of ennett(1962) and Hoeffding(1963) under some suitable random variables. These results are to extend Theorem A and B to LNQD random variables. Furthermore, let ζdenote the pth quantile of the marginal distribution function of the $X_i$'s which is estimated by a smooth estima te $ζ_{pn}$, on the basis of X$_1$, X$_2$, …$X_n$. We establish a convergence of $ζ_{pn}$, under Hoeffding-type probability inequality of LNQD.

EXPONENTIAL PROBABILITY INEQUALITY FOR LINEARLY NEGATIVE QUADRANT DEPENDENT RANDOM VARIABLES

  • Ko, Mi-Hwa;Choi, Yong-Kab;Choi, Yue-Soon
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.137-143
    • /
    • 2007
  • In this paper, a Berstein-Hoeffding type inequality is established for linearly negative quadrant dependent random variables. A condition is given for almost sure convergence and the associated rate of convergence is specified.