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Abstract

Let X, X5, be real valued random variables under linearly negatively quadrant

dependent (LN@D). In this paper, we discuss the probability inequality of ennett(1962)
and Hoeffding(1963) under some suitable random variables. These results are to
extend Theorem A and B to LNQD random variables. Furthermore, let { ,denote

the pth quantile of the marginal distribution function of the X,'s which is estimated
by a smooth estima te %,m, on the basis of X, X3,r, X,. We establish a
convergence of Z’ »n, under Hoeffding-type probability inequality of LN@QD.
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1. Introduction

Let X, X5, be real valued random variables defined on the underlying probability

(2,A,P), and set S, for the sum of the first # random variables, gX ;, and S, for

S,/n. The problem of providing exponential bounds for the probabilities P(iS,|=¢) is of
paramount importance, both in probability and statistics. From a statistical view point, such
inequalities can be used, among other things, for the purpose of providing rates of
convergence for estimates of various quantities. Especially so in a nonparamet ric setting,
where the advantages of a parametric structure are not available to the investigator.
Exponential probability bounds for sums of random variable are very useful in many
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probabilistic derivations, and particularly so in many aspects of parametric as well as
nonparametric statistical inference. Bennett(1962) and Hoeffding(1963) have obtained the
following results on independent random variables.

Theorem A(Bennett 1962). Let X,,---,X, be independent random variables almost surely

bounded, |X}<C;a.s. i=1,--,n, and without loss of generality, assume them to be

centered at their expectations. Set o = Var(X,) = EX?, &&= g:lo‘? = Van(S,), where

S,= le"' Finally, let Cy= max {C;, i=1,",n}. Then for every &>0,

~2/2+2/3-5)

P(S,l=s,0<2e (1.1

Theorem B(Hoeffding 1963). Let X, -+, X, be independent random variables such that
a; <X <b;,i=1,,n. Set u,=EX;i=1,-,nand pu=mn -1 i‘,u,'. Then for every >0,
e

- W8] B e

P(| X— pl=e)<2e (1.2)

However, many variables are dependent in actual problems. One of them is negative
dependence. The concepts of negative dependence have been introduced by Joag and Pro
schan(1983) and have found significant applications in system reliability, statistics, and may
also be appropriate to model certain biosystems and ecosystems. Thus,the following definitions
of negative dependence will be used in obtaining the probability inequality.

Definition 1.1. The random variables X and Y are said to be negatively quadrant dependent
(NQD), if
P(X>x, Yoy)—P(XD>xP(Y>y) <0, Vx,yER.

Definition 1.2. The random variables {X; =1} are said to be linearly negatively quadrant

dependent (LNQD), if for any nonempty disjoint subsets A and B of {1,2,--,n} and for
any positive A;’s, the random variables ;A,-X ; and sz/l iX; are NQD.

Suppose that let {Xj}j=1) be a stationary sequence of LNQD random variables with
continuous distribution function F. Let &, denote the quantile of the distribution funct ion
F(x), ie. a root of the equation F(¢,)=p, with 0<p<1,which is assumed to be unique.

Then, we define an estimate of F,(x) and {, as the followings,

Fao= [ KGR0 =1/n SyrCED,
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where K is a continuous distribution function and {%,;#=1} is a sequence of bandwi dths

with 0<%,—0 as n—>0,

Y= F (D =inflxeR F,(x)=p).

The main purpose of this paper is to extend Theorem A and Theorem B to LNQD random
variables. Furthermore, convergence of ¢ m 1s established, under Hoeffding prob ability-type

inequality of LN@QD random variables.

Lemma 1. Let {X;|1<i{<#} be mean zero of LNQD random variables with |X}<C;
a.s, 1=1,2,-,n Let Cy=max{C}i=1,2,,n}, oo= VarX;)= EX? and §2 =

Z‘o‘%= Var(S,), where S,= ZlXi. Then, for every )0,

(=2/2+% cyt/s,)
P(S, |2 s,0<2e 3O (1.3)
Lemma 2. Suppose that let {X;|1<:/<#n} be LNQD random variables such that
@< X;<bi, i=12.,n Letpi= EX;, i= 12, nand = 35 il n.
Then for every >0,
— ~2nt ] 3 (b —a,)?
P(IX - 20)<2e : (1.4)

As an application of Lemma 2, we obtain the following probability inequality for the
distribution function of the difference of two sample means under LNQD random variabl es.
Remark 1. If X,,...,X,, Y,,...,Y, are LNQD random variables with vales in the

interval [gq,b],and if X= 21X,~/m, 7= ]21 Y, /n, then for 0

P(X— Y- (EX—E D=2t)<2e " %/(m '+ n YNb—a)?.

Remark 2. For the sake of a comparison of Bennett and Hoeffding inequalities under LNQD
random variables, suppose that |X;|<C,i=1,--,n, and in (1.3) and (1.4), repla ce ¢ by
nt/s,. Then inequalities (1.3) and (1.4) become, respectively,
7 s
PUS, 28 <20 SoFeom (15)

and
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_af
P(S,|=H<2 ¥ (16)

Theorem 1. Let {XJj=1} be a stationary sequence of LN@QD random variables with
continuous distribution function F. Then for any & and for all sufficiently large », we have
P(l Ty tyl> €)<2e "W

where (&) = min {F(¢,) —F(&,— ¢), F(&,+e)— F(E) 1> 0.

2. Proof of probability inequalities under LNQD

Proof of Lemmal. Expanding e X according to Taylor’s formula, for ¢>0,

e =1+cX,+ 2 CX
and Ee°© '—1+cE 22 E(X’)
r—2 7
= % Z——iﬁ(—)g'—)— since EX,=0
=2 ”2‘7‘.03
<1+ AEAFL0)
<e 0206/2}7,-(0)’
where F{c)= ;2((:"2E1X,{'/% v o), for i=1,2,,n. 2.1

Suppose that, for 1=1,2,---,n,
BX)'<5 AW, 722, W= Cf3.
Since EX!<EIX,|", substituting the above inequality into equation (2.1) gives
c 7—2% AW
l o7
(cW) 7

F{o < 22

(cW )

iMs iMs

s(1—cW,,>‘1 if cW,<1.
In addition to satisfying this last inequality, c¢ is also chosen so that

(1—cW,) "'<M,, where M,= W,s, 't+1= Cot/3s,+1, then
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cX;

Ee "'<e
For any c¢>0, by Markov's inequality, we obtain that

P(S,zs,)<e “Ee"

M2 .
<o/ , 1=1,2,-,n.

t

Ee
~cs ¢ ; X ¢
=e “E(e 5 e )

1
— Xi - s _Xx'
=e Cs”tCov(ec;Z: “yte "tEeC;Zl Ee
=:Il+[2

Next, we will show that I, is nonpositive. To this end, and application of the Hoeffding

identity (see, for example, Lemma in Lehmann, 1966) yields

=1
¢, = ffP(c ZIX,-> logx, c¢X,> logy)
—1
- P(c Z;X"> logx) P(¢ X,,> logy) dF(x, y),

-1
where F(x,y) is the joint distribution function of X;and X,.

1=

=1
Since 21 X;and X, are N@D, it follows that for all x, y>0,
=1
P(c ZIX,) logx, ¢X,> logy)

=1
— P(c ZIX,) logx)P(cX,> log v)<(.
So that I} is nonpositive. Thus

~cs ¢ ;Xl' c
P(S,2s,0<,=¢ “"Ee A Ee ™.

A repetition of this argument leads to the inequality

—cSat CX,-
P(S,=s,0) <e lIlEe
<e -c‘s,.fe M,/ 2
=e FsIM, 12— cs,t

Taking c=t/s,, we obtain that

—2/@2+2 Cytfs,)
P(S,=s,D)<e 3T (2.2)
By replacing S, by — S, from the above statement, we obtain
—21@2+2 Ctf 5,)
P(S,< —s,H<e 3 . (2.3)

Hence the result follows by (2.2) and (2.3).
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Proof of Lemma 2. To this end, for any arbitrary but fixed c=R, the function g(x) =e¢®

is convex. Therefore, for each i=1, -, n,
EQCXiS b;‘—/‘ieca;_f_ ﬂ;‘_(l,'ecb,«’
b"_‘d,’ b,"'d,'
and

—— el —a . b;— u; . ;T a ,
EeC(X. #i) <e e(u; al)ecal celin i M eca,+ of i ecb,
bi—a; bi—a;

= e[~ kp+In(l—p+pe )] =¥,

i @i bi—p;
Let k= c(b; — a;), p=—’;—;—‘;ﬁ, then1~p=—b—:% and L(k) =—kp+In(1 — p+pc).It

—k
follows that L(0) = L'(0)=0and L' (%)= u(1— ), 0@3—&% <1,

so that L''(u#)<1/4. Expanding L(k) according to Taylor’'s formula up to terms involving
the second derivative and using the above results, we obtain that
2
L(k< % <c?(b; — a;)?/8. Therefore
EeC(Xi"#i)SeCz(bi‘ai)z/B i=1 . n

By Markov's inequality, for ¢)>0,
— _ (X; — ;)
P((X—p)=t) <e c"fE(Jgj “)
(Xi_ t') _
=e—cntE(ec,= “ eC(X,. #,.))

_ c :(Xi_/‘i) X, — _ c ,; (X — ps) X, — u,
e CmCOU(e & ’ eC( ﬂ"))+e cntEe ’21 Ee o Ha)
ZII +12

I

Again, we will show that I; is nonpositive.

eI = ff[P(cg(X,-—m)Mogx, o Xy —t2,)log ¥l
—P(cg(X,- — 1)>log 1) P(( X, — 1£,)>og MdF(x, ),

where F(x, y) is the joint distribution function of E(X,- —u;) and (X, —u,).
Since 'ZII(X,- —u;) and (X, —u,) are N@QD, it follows that for all x, ¥>0,
P(CE(X" —ui)>logx, o(X,—p,)>log y)

—P(CE(X,- —u;)>log x) - P(e(X, — 1,)>log v) <0.



On the Probability Inequalities under Linearly 551
Negatively Quadrant Dependent Condition

So that I; is nonpositive. Thus

J— C'Zl(X,-— ) o _
P(X—w=2h<l=e ™Ee '+ g%

A repetition of this argument leads to the inequality
P( (“X . ,Lt) Zt) <e —cntH:_z:lEe o X, — ;)

2 b
*%— 2(1); —a;) —ont
<e¢ '

Taking c= 4nt/ ﬁl( b;—a;)?, we obtain that
=

P((X—p) =) <g 2H/&Hbma)

Since the same inequality, clearly, holds when (X — p) is replaced by —(X— ),
_ —2n2[ (b~ a)?
P X—u=H<2e o .

Proof of Theorem 1. For &>( and j=1, -, n,
P( 2, +e)=P( F,({+e)<p) =P ZI(U,-,,—EUW%[(I—P)—EUM]), where

U;,=1—-K((&,+¢e~X,))/h,). Note that for all sufficiently large #, 1—p— E(U,)

—F(,+e)— F(§,) 26(e) and1—p— E(U,)> 8e)/2. Furthermore, the random variables

Uju, j=1,",n, are LNQD, since X, j=1,-,n, are LNQD, and U, is a

nondecreasing function of X;, it follows by Remark 2 that for all sufficiently large #,
P(Ty¢te)se OB,

In a similar method, and for all sufficiently large #, it follows that

P(T <8, —e)<e "8,
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