• Title/Summary/Keyword: Linearization method

Search Result 484, Processing Time 0.029 seconds

New Filtering Method for Reducing Registration Error of Distributed Sensors (분산된 센서들의 Registration 오차를 줄이기 위한 새로운 필터링 방법)

  • Kim, Yong-Shik;Lee, Jae-Hoon;Do, Hyun-Min;Kim, Bong-Keun;Tanikawa, Tamio;Ohba, Kohtaro;Lee, Ghang;Yun, Seok-Heon
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.176-185
    • /
    • 2008
  • In this paper, new filtering method for sensor registration is provided to estimate and correct error of registration parameters in multiple sensor environments. Sensor registration is based on filtering method to estimate registration parameters in multiple sensor environments. Accuracy of sensor registration can increase performance of data fusion method selected. Due to various error sources, the sensor registration has registration errors recognized as multiple objects even though multiple sensors are tracking one object. In order to estimate the error parameter, new nonlinear information filtering method is developed using minimum mean square error estimation. Instead of linearization of nonlinear function like an extended Kalman filter, information estimation through unscented prediction is used. The proposed method enables to reduce estimation error without a computation of the Jacobian matrix in case that measurement dimension is large. A computer simulation is carried out to evaluate the proposed filtering method with an extended Kalman filter.

  • PDF

Dynamic Optimization Algorithm of Constrained Motion

  • Eun, Hee-Chang;Yang, Keun-Heok;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1072-1078
    • /
    • 2002
  • The constrained motion requires the determination of constraint force acting on unconstrained systems for satisfying given constraints. Most of the methods to decide the force depend on numerical approaches such that the Lagrange multiplier method, and the other methods need vector analysis or complicated intermediate process. In 1992, Udwadia and Kalaba presented the generalized inverse method to describe the constrained motion as well as to calculate the constraint force. The generalized inverse method has the advantages which do not require any linearization process for the control of nonlinear systems and can explicitly describe the motion of holonomically and/or nongolonomically constrained systems. In this paper, an explicit equation to describe the constrained motion is derived by minimizing the performance index, which is a function of constraint force vector, with respect to the constraint force. At this time, it is shown that the positive-definite weighting matrix in the performance index must be the inverse of mass matrix on the basis of the Gauss's principle and the derived differential equation coincides with the generalized inverse method. The effectiveness of this method is illustrated by means of two numerical applications.

Research on the Basic Rodrigues Rotation in the Conversion of Point Clouds Coordinate System

  • Xu, Maolin;Wei, Jiaxing;Xiu, Hongling
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.120-131
    • /
    • 2020
  • In order to solve the problem of point clouds coordinate conversion of non-directional scanners, this paper proposes a basic Rodrigues rotation method. Specifically, we convert the 6 degree-of-freedom (6-DOF) rotation and translation matrix into the uniaxial rotation matrix, and establish the equation of objective vector conversion based on the basic Rodrigues rotation scheme. We demonstrate the applicability of the new method by using a bar-shaped emboss point clouds as experimental input, the three-axis error and three-term error as validate indicators. The results suggest that the new method does not need linearization and is suitable for optional rotation angle. Meanwhile, the new method achieves the seamless splicing of point clouds. Furthermore, the coordinate conversion scheme proposed in this paper performs superiority by comparing with the iterative closest point (ICP) conversion method. Therefore, the basic Rodrigues rotation method is not only regarded as a suitable tool to achieve the conversion of point clouds, but also provides certain reference and guidance for similar projects.

Digital Pre-Distortion Technique Using Repeated Usage of Feedback Samples (피드백 샘플 반복 활용을 이용한 다지털 전치 왜곡 방안)

  • Lee, Kwang-Pyo;Hong, Soon-Il;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.673-676
    • /
    • 2015
  • Digital Pre-Distortion (DPD) is a linearization technique for nonlinear power amplifiers (PAs) by implementing inverse function of the PA at baseband digital stage. To obtain proper DPD parameters, a feedback path is required to convert the PA output to a baseband signal, and a memory is also needed to store the feedback signals. DPD parameters are usually found by an adaptive algorithm from the feedback samples. However, for the adaptive algorithm to converge to a reliable solution, long feedback samples are required, which increases convergence time and hardware complexity. In this paper, we propose a DPD technique that requires relatively short feedback samples. From the observation that the convergence time of the adaptive algorithm highly depends on the initial condition, this paper iteratively utilizes the feedback samples while keeping and using the converged DPD parameters at the former iteration as the initial condition at the current iteration. Computer simulation results show that the proposed method performs better than the conventional technique while the former requires much shorter feedback samples than the latter.

  • PDF

A Robust Digital Pre-Distortion Technique in Saturation Region for Non-linear Power Amplifier (비선형 전력 증폭기의 포화영역에서 강인한 디지털 전치왜곡 기법)

  • Hong, Soon-Il;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.681-684
    • /
    • 2015
  • Power amplifier is an essential component for transmitting signals to a remote receiver in wireless communication systems. Power amplifier is a non-linear device in general, and the nonlinear distortion becomes severer as the output power increases. The nonlinearity results in spectral regrowth, which leads to adjacent channel interference, and decreases the transmit signal quality. To linearize power amplifiers, many techniques have been developed so far. Among the techniques, digital pre-distortion is known as the most cost and performance effective technique. However, the linearization performance falls down abruptly when the power amplifier operates in its saturation region. This is because of the severe nonlinearity. To relieve this problem, this paper proposes a new adaptive predistortion technique. The proposed technique controls the adaptive algorithm based on the power amplifier input level. Specifically, for small signals, the adaptive predistortion algorithm works normally. On the contrary, for large signals, the adaptive algorithm stops until small signals occur again. By doing this, wrong coefficient update by severe nonlinearity can be avoided. Computer simulation results show that the proposed method can improve the linearization performance compared with the conventional digital predistortion algorithms.

  • PDF

Higher Order Parabolic Equation Modeling Using Galerkin's Method (Galerkin방법을 이용한 고차 포물선 방정식 수중음 전달 해석)

  • 이철원;성우제;정문섭
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 1999
  • Exact forward modeling of acoustic propagation is crucial in MFP such as inverse problems and various other acoustic applications. As acoustic propagation in shallow water environments become important, range dependent modeling has to be considered of which PE method is considered as one of the most accurate and relatively fast. In this paper higher order numerical rode employing the PE method is developed. To approximate the depth directional operator, Galerkin's method is used with partial collocation to lessen necessary calculations. Linearization of tile depth directional operator is achieved via expansion into a multiplication form of (equation omitted) approximation. To approximate the range directional equation, Crank-Nicolson's method is used. Final1y, numerical self stater is employed. Numerical tests are performed for various occan environment scenarios. The results of these tests are compared to exact solutions, OASES and RAM results.

  • PDF

Time Domain Analysis of Ship Motion in Waves Using Finite Element Method (유한요소법을 이용한 파랑 중 선박운동의 시간영역 해석기법 개발)

  • Nam, Bo-Woo;Sung, Hong-Gun;Hong, Sa-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.16-23
    • /
    • 2009
  • The three-dimensional ship motion with forward speed was solved by a finite element method in the time domain. A boundary value problem was described in the frame of a fixed-body reference, and the problem was formulated according to Double-Body and Neumann-Kelvin linearizations. Laplace's equation with boundary conditions was solved by a classical finite element method based on the weak formulation. Chebyshev filtering was used to get rid of an unwanted saw-tooth wave and a wave damping zone was adopted to impose a numerical radiation condition. The time marching of the free surface was performed by the 4th order Adams-Bashforth-Moulton method. Wigley I and Wigely III models were considered for numerical validation. The hydrodynamic coefficients and wave exciting forces were validated by a comparison with experimental data and the numerical results of the Wigley I. The effects of the linearization are also discussed. The motion RAO was also checked with a Wigley III model through mono-chromatic and multi-chromatic regular waves.

A Design of New Digital Adaptive Predistortion Linearizer Algorithm Based on DFP(Davidon-Fletcher-Powell) Method (DFP Method 기반의 새로운 적응형 디지털 전치 왜곡 선형화기 알고리즘 개발)

  • Jang, Jeong-Seok;Choi, Yong-Gyu;Suh, Kyoung-Whoan;Hong, Ui-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.312-319
    • /
    • 2011
  • In this paper, a new linearization algorithm for DPD(Digital PreDistorter) is suggested. This new algorithm uses DFP(Davidon-Fletcher-Powell) method. This algorithm is more accurate than that of the existing algorithms, and this method renew the best-fit value in every routine with out setting the initial value of step-size. In modeling power amplifier, the memory polynomial model which can model the memory effect of the power amplifier is used. And the overall structure of linearizer is based on an indirect learning architecture. In order to verify for performance of proposed algorithm, we compared with LMS(Least Mean-Squares), RLS(Recursive Least squares) algorithm.

Calculation of 3-D Navier-Stokes Equations by an IAF Method (인수분해 음해법에 의한 3차원 Navier-Stokes 방정식의 계산)

  • Seung-Hyun Kwag
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • The three-dimensional incompressible clavier-Stokes equations are solved to simulate the flow field around a Wigley model with free-surface. The IAF(Implicit Approximate Factorization) method is used to show a good success in reducing the computing time. The CPU time is almost an half of that if the IAF method were used. The present method adopts the local linearization and Euler implicit scheme without the pressure-gradient terms for the artificial viscosity. Calculations are carried out at the Reynolds number of $10^6$ and the Froude numbers are 0.25, 0.289 and 0.316. For the approximations of turbulence, the Baldwin-Lomax model is used. The resulting free-surface wave configurations and the velocity vectors are compared with those by the explicit method and experiments.

  • PDF

Modeling and Digital Predistortion Design of RF Power Amplifier Using Extended Memory Polynomial (확장된 메모리 다항식 모델을 이용한 전력 증폭기 모델링 및 디지털 사전 왜곡기 설계)

  • Lee, Young-Sup;Ku, Hyun-Chul;Kim, Jeong-Hwi;Ryoo, Kyoo-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1254-1264
    • /
    • 2008
  • This paper suggests an extended memory polynomial model that improves accuracy in modeling memory effects of RF power amplifiers(PAs), and verifies effectiveness of the suggested method. The extended memory polynomial model includes cross-terms that are products of input terms that have different delay values to improve the limited accuracy of basic memory polynomial model that includes the diagonal terms of Volterra kernels. The complexity of the memoryless model, memory polynomial model, and the suggested model are compared. The extended memory polynomial model is represented with a matrix equation, and the Volterra kernels are extracted using least square method. In addition, the structure of digital predistorter and digital signal processing(DSP) algorithm based on the suggested model and indirect learning method are proposed to implement a digital predistortion linearization. To verify the suggested model, the predicted output of the model is compared with the measured output for a 10W GaN HEMT RF PA and 30 W LDMOS RF PA using 2.3 GHz WiBro input signal, and adjacent-channel power ratio(ACPR) performance with the proposed digital predistortion is measured. The proposed model increases model accuracy for the PAs, and improves the linearization performance by reducing ACPR.