• Title/Summary/Keyword: Linear-metro

Search Result 26, Processing Time 0.021 seconds

Environmental Sensor Monitoring System of Subway Stations Using USN (USN을 이용한 지하철 역사 대기환경 모니터링 시스템)

  • Oh, Joon-Tae;Kim, Gyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.60-66
    • /
    • 2011
  • The$PM_{10}$ concentrations in the underground should be monitored for the health of commuters on the subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation are measuring several air pollutants regularly. In this paper, the reliability of the instruments using light scattering method is improved with the help of a linear regression analysis technique to measure the $PM_{10}$ concentrations continuously in the subway stations. In addition, an USN monitoring system is implemented to display and record the data of $PM_{10}$, CO/$CO_2$, humidity, and temperature. To transmit and receive these measured sensor data, 2.4GHz Zigbee, 424MHz wireless communication, and CDMA M2M method are applied and evaluated.

Study on Accident Prediction Models in Urban Railway Casualty Accidents Using Logistic Regression Analysis Model (로지스틱회귀분석 모델을 활용한 도시철도 사상사고 사고예측모형 개발에 대한 연구)

  • Jin, Soo-Bong;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.482-490
    • /
    • 2017
  • This study is a railway accident investigation statistic study with the purpose of prediction and classification of accident severity. Linear regression models have some difficulties in classifying accident severity, but a logistic regression model can be used to overcome the weaknesses of linear regression models. The logistic regression model is applied to escalator (E/S) accidents in all stations on 5~8 lines of the Seoul Metro, using data mining techniques such as logistic regression analysis. The forecasting variables of E/S accidents in urban railway stations are considered, such as passenger age, drinking, overall situation, behavior, and handrail grip. In the overall accuracy analysis, the logistic regression accuracy is explained 76.7%. According to the results of this analysis, it has been confirmed that the accuracy and the level of significance of the logistic regression analysis make it a useful data mining technique to establish an accident severity prediction model for urban railway casualty accidents.

A Study on Correlation between Compressive Strength and Rebound Hardness of Urban Underground Structures (도시철도 지하구조물 압축강도와 반발경도의 상관관계에 관한 연구)

  • Choi, Jung-Youl;Lee, Soo-Jae;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.655-661
    • /
    • 2020
  • In this study, the correlation between concrete core compressive strength and rebound hardness of urban railway underground structures was analyzed. The equations for the range of rebound hardness were derived and compared with the measured concrete core strengths for each range of rebound hardness to confirm the adequacy of the estimated compressive strength. As the result, the linear regression analysis results of the average compressive strength by the Gaussian probability density function (representative compressive strength estimation formula) and the estimation formula by the rebound hardness range were founded to match well within 3% of the experimental concrete core compressive strength test results. Therefore, the stochastic statistical analysis using the rebound hardness measurement results suggested in this study could be help to secure the confidence level of the correlation between the rebound hardness and the concrete compressive strength which are relatively large deviation according to the estimation equations.

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite

  • Zaid, Mohammad;Sadique, Md. Rehan;Alam, M. Masroor;Samanta, Manojit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.245-259
    • /
    • 2020
  • Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.

Timetabling and Analysis of Train Connection Schedule Using Max-Plus Algebra (Max-Plus 대수를 이용한 환승 스케줄 시간표 작성 및 분석)

  • Park, Bum-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.267-275
    • /
    • 2009
  • Max-plus algebra is a nonlinear system comprised of two operations, maximization (max) and addition (Plus), which are corresponding to the addition and the multiplication in conventional algebra, respectively. This methodology is applicable to many discrete event systems containing the state transition with the maximization and addition operation. Timetable with connection is one of such systems. We present the method based on max-plus algebra, which can make up timetable considering transfer and analyse its stability and robustness. In this study, it will be shown how to make up the timetable of the urban train and analyse its stability using Max-Plus algebra.

A study on the number of passengers using the subway stations in Seoul (데이터마이닝 기법을 이용한 서울시 지하철역 승차인원 예측)

  • Cho, Soojin;Kim, Bogyeong;Kim, Nahyun;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.111-128
    • /
    • 2019
  • Subways are eco-friendly public transportation that can transport large numbers of passengers safely and quickly. It is necessary to predict the accurate number of passengers in order to increase public interest in subway. This study groups stations on Lines 1 to 9 of the Seoul Metropolitan Subway using clustering analysis. We propose one final prediction model for all stations and three optimal prediction models for each cluster. We found three groups of stations out of 294 total subway stations. The Group 1 area is industrial and commercial, the Group 2 ares is residential and commercial, and the Group 3 area is residential districts. Various data mining techniques were conducted for each group, as well as driving some influential factors on demand prediction. We use our model to predict the number of passengers for 8 new stations which are part of the 3rd extension plan of Seoul metro line 9 opened in October 2018. The estimated average number of passengers per hour is from 241 to 452 and the estimated maximum number of passengers per hour is from 969 to 1515. We believe our analysis can help improve the efficiency of public transportation policy.