• Title/Summary/Keyword: Linear vehicle model

Search Result 329, Processing Time 0.028 seconds

Vibration analysis of CFST tied-arch bridge due to moving vehicles

  • Yang, Jian-Rong;Li, Jian-Zhong;Chen, Yong-Hong
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • Based on the Model Coupled Method (MCM), a case study has been carried out on a Concrete-Filled Steel Tubular (CFST) tied arch bridge to investigate the vibration problem. The mathematical model assumed a finite element representation of the bridge together with beam, shell, and link elements, and the vehicle simulation employed a three dimensional linear vehicle model with seven independent degrees-of-freedom. A well-known power spectral density of road pavement profiles defined the road surface roughness for Perfect, Good and Poor roads respectively. In virtue of a home-code program, the dynamic interaction between the bridge and vehicle model was simulated, and the dynamic amplification factors were computed for displacement and internal force. The impact effects of the vehicle on different bridge members and the influencing factors were studied. Meanwhile the acceleration responses of some of the components were analyzed in the frequency domain. From the results some valuable conclusions have been drawn.

A Development of the Modular Experimental Vehicle with Variable Suspension Systems (현가계의 교체가 가능한 모듈형 실험차량의 개발)

  • 배상우;강주석;윤중락;이재형;이장무;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.132-139
    • /
    • 1997
  • It is difficult for most of passenger cars to attach various types of suspensions. The modular experimental vehicle, which is designed to exchange suspension systems, has been developed to evaluate the effect of design changes of a suspension upon ride and handling characteristics of a vehicle. In order to enable the assemblage between modules, the experimental vehicle design is based on a space frame construction through finite element analysis. Moreover, module frames and brackets are designed using three-dimensional solid modeler to check the interference between each part of a vehicle. Steady-state and transient road tests were performed. Multibody dynamic model and simplified linear vehicle model are made to compare with the tests. The results of simulations and tests show the performance and validity of this experimental vehicle.

  • PDF

Vehicle Stability Analysis using a Non-linear Simplified Model (비선형 단순 모델을 이용한 차량 안정성 해석)

  • Ko, Young-Eun;Song, Chul-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.29-37
    • /
    • 2008
  • Vehicle stability is a very important subject in vehicle design and control, because vehicle safety is closely dependent upon its dynamic stability. For the vehicle stability analysis, the nonlinear vehicle model of a mid-size car with three DOF - longitudinal, lateral and yaw - is employed. A rigorous method is used to determine the vehicle stability region in plane motion. An algorithm is used to materialize a topology theorem, which enables to find the exact stability region. A stability criterion for the critical cornering is proposed.

Theoretical formulation for vehicle-bridge interaction analysis based on perturbation method

  • Tan, Yongchao;Cao, Liang;Li, Jiang
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.191-204
    • /
    • 2022
  • A three-mass vehicle model including one rigid mass and two unsprung masses is adopted to predict the vehicle-bridge interaction (VBI) and to establish the nonlinear coupled governing equations. To overcome the numerical instability and large computation problems concerning the vehicle-bridge system, the perturbation method is used to convert the nonlinear coupled governing equations into a set of linear uncoupled equations. Formulas for bridge's natural frequencies considering both the VBI and the dynamic responses of bridge and vehicle are proposed. Compared with the numerical results obtained by the Newmark-β method, the theoretical solutions for natural frequencies and dynamic responses are validated. The effects of the important factors of unsprung mass, vehicle damping, surface irregularity on the natural frequencies and dynamic responses of bridge and vehicle are discussed, based on the theoretical solutions.

Control Performance Comparison of Model-referenced and Map-based Control Method for Vehicle Lateral Stability Enhancement (차량 횡방향 안정성 향상을 위한 모델 참조 제어와 맵기반 제어 방법의 제어 성능 비교)

  • Yoon, Moonyoon;Baek, Seunghwan;Choi, Jungkwang;Boo, Kwangsuck;Kim, Heungseob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.253-259
    • /
    • 2014
  • This study proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. The performances of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with low friction coefficient. The simulation results show that map-based control provides better stability than model-referenced control.

Sensitivity Analysis of Transfer Mechanism to Brake Judder (브레이크 저더에 대한 전달계 민감도 해석)

  • Sim, Kyung-Seok;Park, Tae-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.401-406
    • /
    • 2011
  • The abnormal vibration from the BTV(Brake Torque Variation) and DTV(Disc Thickness Variation) is transferred to the suspension and steering system during braking. In this paper, judder simulation is carried out using multi-body dynamic analysis program to analyze the relation of the judder and transfer mechanism which is composed of the suspension and steering system. In order to analyze the brake judder transfer system, the full vehicle model was composed with rigid body, non-linear bushing, non-linear constraints and joints. Full vehicle model analysis was compared by actual vehicle judder test and sensitivity analysis of the suspension system is carried out.

  • PDF

A TSK Fuzzy Controller for Underwater Robots

  • Kim, Su-Jin;Oh, Kab-Suk;Lee, Won-Chang;Kang, Geun-Taek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.320-325
    • /
    • 1998
  • Underwater robotic vehicles (URVs) have been an important tool for various underwater tasks because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system becomes one of the most critical subsytems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. In this paper a new type of fuzzy model-based controller based on Takagi-Sugeno-Kang fuzzy model is designed and applied to the control of of an underwater robotic vehicle. The proposed fuzzy controller : 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule ; 2) can guarantee the stability of the closed-loop fuzzy system ; 3) is relatively easy to implement. Its good performance as well as its robustness to the change of parameters have been shown and compared with the re ults of conventional linear controller by simulation.

  • PDF

Chaotic Response of a Nonlinear Vehicle Model and Elimination of the Chaos

  • Lai, Edmund;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.106.6-106
    • /
    • 2001
  • In this paper, a four-degree-of-freedom non-linear model is developed to study the dynamic response of vehicle that is caused by the disturbance from the road. The chaotic vibration of the model is investigated with numerical simulation. The model displays complicated dynamic responses including harmonic motions and chaos. It is found that changing of the damping coefficients of the system can eliminate the chaotic response.

  • PDF

Active Vibration Control of Vehicle by Active Linear Actuator and Filtered-x LMS Algorithm (전동식 동흡진기와 Filtered-X LMS알고리즘을 이용한 차량의 능동진동제어 실험)

  • Lee, Han-Dong;Kwak, Moon-K.;Kim, Jeong-Hoon;Song, Yoon-Chul;Park, Woon-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.357-363
    • /
    • 2009
  • This paper deals with the Filtered-x Least Mean Square algorithm for a active vibration control in vehicle vibration reduction. Before applying the proposed FxLMS algorithm to automobile, the performance of the FxLMS algorithm is simulated using sensor data of a vehicle. The FxLMS algorithm requires that reference signal be a representation of disturbance signal and the plant model be incorporated into the computation path. To this end, The system identification is carried out to obtain the plant model based on the measurement results. A tachometer signal is used as reference signal. The FxLMS control algorithm is first tested using simulation and applied to a vehicle. Experimental results show that the proposed control algorithm can reduce vibration level in a short period of time.

  • PDF

Structural Analysis of S-cam Brake Shoe for Commercial Vehicle by FEM (FEM을 이용한 상용차용 S-cam 브레이크슈의 구조해석)

  • Suh, Chang-Min;Jee, Hyun-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2009
  • Structural analysis of a brake shoe for commercial vehicle was performed using finite element method. Since the strength of a brake shoe is affected by the magnitude and distribution shape of the contact pressure with the drum, the contact pressure between the shoe friction material and drum was calculated using a 2-Dimensional non-linear contact analysis in a state. And the brake was actuated by input air pressure and the drum of it was calculated both stationary and dynamic based on forced torque applied to the drum during the static state analysis. The results of the above analysis were then used as the load boundary conditions for a 3-Dimensional shoe model analysis to determine the maximum strain on the shoes. In the analysis model, the values of tensile test were used for the material properties of the brake shoes and drum, while the values of compression test were used for the friction material. We assumed it as linear variation, even though the properties of friction material were actually non-linear. The experiments were carried out under the same analysis conditions used for fatigue test and under the same brake system which equipped with a brake drum based on the actual axle state in a vehicle. The strains were measured at the same locations where the analysis was performed on the shoes. The obtained results of the experiment matched well with those from the analysis. Consequently, the model used in this study was able to determine the stress at the maximum air pressure at the braking system, thereby a modified shoe model in facilitating was satisfied with the required endurance strength in the vehicle.