• Title/Summary/Keyword: Linear temperature distribution

Search Result 260, Processing Time 0.089 seconds

Effect of Boundary Temperature Distributions on the Outlet Gas Composition of the Cylindrical Steam Reformer (원통형 수증기 개질기의 경계 온도 분포에 따른 개질 가스 조성 변화)

  • Kim, Seok;Han, Hun-Sik;Kim, Seo-Young;Hyun, Jae-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.383-391
    • /
    • 2011
  • Numerical simulations have been conducted for the cylindrical steam reformer having various boundary temperature distributions. $CH_4$, $H_2O$, CO, $H_2$ and $CO_2$ are often generated or destroyed by the reactions, namely the Steam Reofrming(SR) reaction, the Water-Gas Shift (WGS) reaction and the Direct Steam Reforming(DSR) reaction. The SR and the DSR reactions are endothermic reactions, and the WGS reaction is an exothermic reaction. The rate of reactions can be slightly controlled by artificially given boundary temperature distributions. Therefore, the component ratio of the gases at the outlet are different for various boundary temperature distributions, namely the constant, cubic and linear distributions. Among these distributions, the linear temperature distribution is outstanding for efficient hydrogen production of the steam reformer.

Low Temperature Test of HWR Cryomodule

  • Kim, Heetae;Kim, Youngkwon;Lee, Min Ki;Park, Gunn-Tae;Kim, Wookang
    • Applied Science and Convergence Technology
    • /
    • v.25 no.3
    • /
    • pp.47-50
    • /
    • 2016
  • Low temperature test for half-wave resonator (HWR) cryomodule is performed at the superfluid helium temperature of 2 K. The effective temperature is defined for non-uniform temperature distribution. Helium leak detection techniques are introduced for cryogenic system. Experimental set up is shown to make the low temperature test for the HWR cryomodule. The cooldown procedure of the HWR cryomodule is shown from room temperature to 2 K. The cryomodules is precooled with liquid nitrogen and then liquid helium is supplied to the helium reservoirs and cavities. The pressure of cavity and chamber are monitored as a function of time. The vacuum pressure of the cryomodule is not increased at 2 K, which shows leak-tight in the superfluid helium environment. Static heat load is also measured for the cryomodule at 2.5 K.

MODELING ON FLOW CHARACTERISTICS OF INERTANCE PULSE TUBE CRYOCOOLER (관성관 맥동관 극저온 냉동기의 유동 특성 모델링)

  • Han, S.H.;Lee, K.H.;Choi, J.W.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.14-19
    • /
    • 2014
  • The flow characteristics of inertance pulse tube cryocooler(IPTC) was investigated with a computational thermal fluid dynamics for the reciprocating flow in IPTC including the piston movement of linear compressor. Two dimensional axisymmetric modeling was applied for the flow in an IPTC with a clearance between the piston and cylinder wall of linear compressor. The pressure, velocity, and temperature distribution were examined for the steady state. These were compared with previous results to confirm the validity in the modeling and computational results. The leakage between piston and cylinder wall affect the cooling capacity seriously. The dependence on mesh numbers were also examined to obtain a proper mesh numbers to improve the accuracy of calculation, which showed significant effect on the results. The user-defined function was used for the process of compression and expansion of piston.

A Numerical Study on Natural Convection Between Skin and Fabrics (Phoenics를 이용한 옷감의 종류 및 두께의 변화에 따른 열전달 특성의 수치 해석적 연구)

  • 홍지명
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.1
    • /
    • pp.142-148
    • /
    • 1995
  • In this study, FVM (Finite Volume Method) which is one of the 2-dimensional numerical approach has been conducted to anticipate the temperature distribution between skin and clothes by the change of air temperature and fabric characteristics including fabric thickness. Several experimental works have been done to understand the thermal insulation effect (If fabrics on a human body by measuring the averaged temperature in the air layer between skin and clothes or by measuring the thermal resistance of fabrics. However, the formal method is inconvenient to measure the temperature distribution in the air layer to evaluate the insulation rate of the clothes on the skin because the real size of the clearance between skin and the clothes is too small to place the temperature sensor, and in the Tatter method the relationship between human body and the fabrics are ignored. However, the numerical method will be very effective and economical way to evaluate the insulation efficiency of clothes when the computational result is in the reliable range. As the result of this study, the temperature change in the sir layer between skin and clothes was linear to the fabric thickness and this result coincides with many previous experimental results. Moreover, it is possible to predict the optimum fabric thickness for the best thermal insulation in the air layer between skin and clothes.

  • PDF

Analysis of reliability test results of low-pass filter assembly (저역필터 어셈블리에 대한 신뢰성시험 결과의 해석)

  • Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • Thermal shock tests at two stress levels were performed to see the life (cycles) of LPF ASSY (low pass filter assembly) at normal stress level. In this case Coffin-Manson relationship is generally used to describe the relationship between the temperature difference and the life, together with the Weibull distribution describing the life at each stress level. So for given data Coffin-Manson is fitted to predict the life at normal stress level. However, different types of models are appropriate for this type of test. Hence, a more appropriate model such as General log-linear model which can also incorporate the duration at the highest and lowest temperatures and acceleration time will be introduced.

Photo-induced Living Cationic Polymerization of Tetrahydrofuran. III. Synthesis of Poly(THF-co-3-MTHF)

  • Soukil Mah;Choi, Jia;Lee, Hansup;Choi, Soonja
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Poly(3-methyltetrahydrofuran)(3-MTHF) and poly(tetrahydrofuran-co-3-MTHF), having very narrow molecular weight distribution were successfully synthesized via photo-induced living cationic polymerization in the presence of diphenyliodonium hexafluorophosphate. Linear relationship between % conversion and number average molecular weight of resulting poly(3-MTHF) in the polymerization of 3-MTHF, carried out at -22$^{\circ}C$, indicates that the 5-membered cyclic oxonium ion, being responsible for the cationic propagation is stabilized by ion pall formation with hexafluorophosphate anion, supplied from the salt. The linear relationship between two parameters, mentioned above was also observed in the copolymerization of 3-MTHF with THF, carried out at 0 and -22$^{\circ}C$. The molecular structures including the copolymer composition and average molecular weight and its distribution is determined by reaction parameters such as monomer feed ratio and reaction temperature.

  • PDF

Study and analysis of porosity distribution effects on the buckling behavior of functionally graded plates subjected to diverse thermal loading

  • Abdelhak Zohra;Benferhat Rabia;Hassaine Daouadji Tahar
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.115-132
    • /
    • 2024
  • This paper introduces an improved shear deformation theory for analyzing the buckling behavior of functionally graded plates subjected to varying temperatures. The transverse shear strain functions employed satisfy the stress-free condition on the plate surfaces without requiring shear correction factors. The material properties and thermal expansion coefficient of the porous functionally graded plate are assumed temperature-dependent and exhibit continuous variation throughout the thickness, following a modified power-law distribution based on the volume fractions of the constituents. Moreover, the study considers the influence of porosity distribution on the buckling of the functionally graded plates. Thermal loads are assumed to have uniform, linear, and nonlinear distributions through the thickness. The obtained results, considering the effect of porosity distribution, are compared with alternative solutions available in the existing literature. Additionally, this study provides comprehensive discussions on the influence of various parameters, emphasizing the importance of accounting for the porosity distribution in the buckling analysis of functionally graded plates.

Free vibration investigation of functionally graded plates with temperature-dependent properties resting on a viscoelastic foundation

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Amina Attia;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • The free vibration of temperature-dependent functionally graded plates (FGPs) resting on a viscoelastic foundation is investigated in this paper using a newly developed simple first-order shear deformation theory (FSDT). Unlike other first order shear deformation (FSDT) theories, the proposed model contains only four variables' unknowns in which the transverse shear stress and strain follow a parabolic distribution along the plates' thickness, and they vanish at the top and bottom surfaces of the plate by considering a new shape function. For this reason, the present theory requires no shear correction factor. Linear steady-state thermal loads and power-law material properties are supposed to be graded across the plate's thickness. Uniform, linear, non-linear, and sinusoidal thermal rises are applied at the two surfaces for simply supported FGP. Hamilton's principle and Navier's approach are utilized to develop motion equations and analytical solutions. The developed theory shows progress in predicting the frequencies of temperature-dependent FGP. Numerical research is conducted to explain the effect of the power law index, temperature fields, and damping coefficient on the dynamic behavior of temperature-dependent FGPs. It can be concluded that the equation and transformation of the proposed model are as simple as the FSDT.

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

On thermal stability of plates with functionally graded coefficient of thermal expansion

  • Bousahla, Abdelmoumen Anis;Benyoucef, Samir;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.313-335
    • /
    • 2016
  • In this article, a four-variable refined plate theory is presented for buckling analysis of functionally graded plates subjected to uniform, linear and non-linear temperature rises across the thickness direction. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. Young's modulus and Poisson ratio of the FGM plates are assumed to remain constant throughout the entire plate. However, the coefficient of thermal expansion of the FGM plate varies according to a power law form through the thickness coordinate. Equilibrium and stability equations are derived based on the present theory. The influences of many plate parameters on buckling temperature difference such ratio of thermal expansion, aspect ratio, side-to-thickness ratio and gradient index will be investigated.