DOI QR코드

DOI QR Code

Study and analysis of porosity distribution effects on the buckling behavior of functionally graded plates subjected to diverse thermal loading

  • 투고 : 2023.09.06
  • 심사 : 2023.10.29
  • 발행 : 2024.04.25

초록

This paper introduces an improved shear deformation theory for analyzing the buckling behavior of functionally graded plates subjected to varying temperatures. The transverse shear strain functions employed satisfy the stress-free condition on the plate surfaces without requiring shear correction factors. The material properties and thermal expansion coefficient of the porous functionally graded plate are assumed temperature-dependent and exhibit continuous variation throughout the thickness, following a modified power-law distribution based on the volume fractions of the constituents. Moreover, the study considers the influence of porosity distribution on the buckling of the functionally graded plates. Thermal loads are assumed to have uniform, linear, and nonlinear distributions through the thickness. The obtained results, considering the effect of porosity distribution, are compared with alternative solutions available in the existing literature. Additionally, this study provides comprehensive discussions on the influence of various parameters, emphasizing the importance of accounting for the porosity distribution in the buckling analysis of functionally graded plates.

키워드

과제정보

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

참고문헌

  1. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "Thermal buckling of functionally graded plates using a n-order four variable refined theory", Adv. Mater. Res., 4(1), 31. http://doi.org/10.12989/amr.2015.4.1.31.
  2. Abderezak, R., Daouadji, T.H. and Rabia, B. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Couple. Syst. Mech., 9(5), 473. http://doi.org/10.12989/csm.2020.9.5.473.
  3. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., 10(1), 23. http://doi.org/10.12989/amr.2021.10.1.023.
  4. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Couple. Syst. Mech., 10(4), 299-316. http://doi.org/10.12989/csm.2021.10.4.299.
  5. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGMdamaged RC hybrid beams", Adv. Comput. Des., 6(2), 117. http://doi.org/10.12989/acd.2021.6.2.117.
  6. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "New solution for damaged porous RC cantilever beams strengthening by composite plate", Adv. Mater. Res., 10(3), 169. http://doi.org/10.12989/amr.2021.10.3.169.
  7. Abderezak, R., Daouadji, T.H. and Rabia, B. (2022), "Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported", Steel Compos. Struct., 45(4), 591-603. https://doi.org/10.12989/scs.2022.45.4.591.
  8. Abderezak, R., Daouadji, T.H. and Tayeb, B. (2023), "Composite aluminum-slab RC beam bonded by a prestressed hybrid carbon-glass composite material", Struct. Eng. Mech., 85(5), 573. https://doi.org/10.12989/sem.2023.85.5.573.
  9. Abderezak, R., Rabia, B. and Daouadji, T.H. (2022), "Rehabilitation of RC structural elements: Application for continuous beams bonded by composite plate under a prestressing force", Adv. Mater. Res., 11(2), 91-109. https://doi.org/10.12989/amr.2022.11.2.091.
  10. Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., 7(2), 83. https://doi.org/10.12989/amr.2018.7.2.083.
  11. Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Couple. Syst. Mech., 9(6), 575. http://doi.org/10.12989/csm.2020.9.6.575.
  12. Aissa, B., Rabia, B. and Tahar, H.D. (2023), "Predicting and analysis of interfacial stress distribution in RC beams strengthened with composite sheet using artificial neural network", Struct. Eng. Mech., 87(6), 517-527. https://doi.org/10.12989/sem.2023.87.6.517.
  13. Alashkar, A., Elkafrawy, M., Hawileh, R. and AlHamaydeh, M. (2022), "Buckling analysis of functionally graded materials (FGM) thin plates with various circular cutout arrangements", J. Compos. Sci., 6(9), 277. https://doi.org/10.3390/jcs6090277.
  14. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016), "Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.
  15. Bouakaz, K., Daouadji, T.H., Meftah, S.A., Ameur, M., Tounsi, A. and Bedia, E.A. (2014), "A numerical analysis of steel beams strengthened with composite materials", Mech. Compos. Mater., 50, 491-500. https://doi.org/10.1007/s11029-014-9435-x.
  16. Bouiadjra, M.B., Ahmed Houari, M.S. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35(8), 677-694. http://doi.org/10.1080/01495739.2012.688665.
  17. Bourada, F., Bousahla, A.A., Tounsi, A., Tounsi, A., Tahir, S.I., Al-Osta, M.A. and Do-Van, T. (2023), "An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates", Comput. Concrete, 32(1), 61-74. https://doi.org/10.12989/cac.2023.32.1.061.
  18. Bouzid, H., Rabia, B. and Daouadji, T.H. (2022), "Curvature ductility of confined HSC columns", International Conference on Innovative Solutions in Hydropower Engineering and Civil Engineering, Singapore, September.
  19. Bouzid, H., Rabia, B. and Daouadji, T.H. (2023), "Ultimate behavior of RC beams strengthened in flexure using FRP material", Eng. Struct., 289, 116300. https://doi.org/10.1016/j.engstruct.2023.116300.
  20. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  21. Chergui, S., Daouadji, T.H., Hamrat, M., Boulekbache, B., Bougara, A., Abbes, B. and Amziane, S. (2019), "Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study", Adv. Mater. Res., 8(3), 197. https://doi.org/10.12989/amr.2019.8.3.197.
  22. Daouadji, T.H. (2013), "Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates", Strength Mater., 45(5), 587-597. https://doi.org/10.1007/s11223-013-9496-4.
  23. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  24. Daouadji, T.H., Abderezak, R. and Rabia, B. (2022), "New technique for repairing circular steel beams by FRP plate", Adv. Mater. Res., 11(3), 171-190. https://doi.org/10.12989/amr.2022.11.3.171
  25. Daouadji, T.H., Abderezak, R., Rabia, B. and Tounsi, A. (2021), "Renovation of steel beams using by imperfect functionally graded materials plate", Steel Compos. Struct., 41(6), 851-860. https://doi.org/10.12989/scs.2021.41.6.851.
  26. Fan, F., Safaei, B. and Sahmani, S. (2021), "Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis", Thin Wall. Struct., 159, 107231. https://doi.org/10.1016/j.tws.2020.107231.
  27. Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: effect of the distribution shape of porosity", Couple. Syst. Mech., 10(1), 61. http://doi.org/10.12989/csm.2021.10.1.061.
  28. Hamrat, M., Bouziadi, F., Boulekbache, B., Daouadji, T.H., Chergui, S., Labed, A. and Amziane, S. (2020), "Experimental and numerical investigation on the deflection behavior of pre-cracked and repaired reinforced concrete beams with fiber-reinforced polymer", Constr. Build. Mater., 249, 118745. https://doi.org/10.1016/j.conbuildmat.2020.118745.
  29. Hashim, H.A. and Sadiq, I.A. (2021), "A five-variable refined plate theory for thermal buckling analysis of composite plates", Compos. Mater. Eng., 3(2), 135-155. http://doi.org/10.12989/cme.2021.3.2.135.
  30. Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751.
  31. Kablia, A., Benferhat, R. and Hassaine Daouadji, T. (2022), "Dynamic of behavior for imperfect FGM plates resting on elastic foundation containing various distribution rates of porosity: Analysis and modeling", Couple. Syst. Mech., 11(5), 389-409. https://doi.org/10.12989/csm.2022.11.5.389.
  32. Kablia, A., Benferhat, R., Daouadji, T.H. and Abderezak, R. (2023), "Free vibration of various types of FGP sandwich plates with variation in porosity distribution", Struct. Eng. Mech., 85(1), 1-14. https://doi.org/10.12989/sem.2023.85.1.00.
  33. Kumar, V., Singh, S.J., Saran, V.H. and Harsha, S.P. (2023, September), "Effect of elastic foundation and porosity on buckling response of linearly varying functionally graded material plate", Struct., 55, 1186-1203. https://doi.org/10.1016/j.istruc.2023.06.084.
  34. Mahmoud, S.R. and Tounsi, A. (2017), "A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 24(5), 569-578. https://doi.org/10.12989/scs.2017.24.5.569.
  35. Mokhtar, B., Abedlouahed, T., Abbas, A. and Abdelkader, M. (2009), "Buckling analysis of functionally graded plates with simply supported edges", Leonardo J. Sci., 16, 21-32.
  36. Rabia, B., Abderezak, R., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate", Adv. Mater. Res., 7(1), 29. https://doi.org/10.12989/amr.2018.7.1.029.
  37. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601. https://doi.org/10.12989/eas.2019.16.5.601.
  38. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  39. Rabia, B., Daouadji, T.H. and Abderezak, R. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: Study and analysis", Adv. Mater. Res., 9(4), 265. http://doi.org/10.12989/amr.2020.9.4.265.
  40. Rabia, B., Daouadji, T.H. and Abderezak, R. (2021), "Analysis and sizing of RC beams reinforced by external bonding of imperfect functionally graded plate", Adv. Mater. Res., 10, 77-98. http://doi.org/10.12989/amr.2021.10.2.077.
  41. Rabia, B., Daouadji, T.H. and Abderezak, R. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41. http://doi.org/10.12989/cme.2021.3.1.041.
  42. Rabia, B., Daouadji, T.H. and Abderezak, R. (2023), "Mechanical behavior of RC beams bonded with thin porous FGM plates: Case of fiber concretes based on local materials from the mountains of the Tiaret highlands", Couple. Syst. Mech., 12(3), 241-260. https://doi.org/10.12989/csm.2023.12.3.241.
  43. Radwan, A.F. (2019), "Effects of non-linear hygrothermal conditions on the buckling of FG sandwich plates resting on elastic foundations using a hyperbolic shear deformation theory", J. Sandw. Struct. Mater., 21(1), 289-319. https://doi.org/10.1177/1099636217693557.
  44. Ramu, I. and Mohanty, S.C. (2014), "Buckling analysis of rectangular functionally graded material plates under uniaxial and biaxial compression load", Procedia Eng., 86, 748-757. https://doi.org/10.1016/j.proeng.2014.11.094.
  45. Reddy, B.S., Kumar, J.S., Reddy, C.E. and Reddy, K. (2013), "Buckling analysis of functionally graded material plates using higher order shear deformation theory", J. Compos., 2013, Article ID 808764. https://doi.org/10.1155/2013/808764.
  46. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., ... & Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  47. Sitli, Y., Mhada, K., Bourihane, O. and Rhanim, H. (2021), "Buckling and post-buckling analysis of a functionally graded material (FGM) plate by the asymptotic numerical method", Struct., 31, 1031-1040. https://doi.org/10.1016/j.istruc.2021.01.100.
  48. Tahar, H.D., Abderezak, R. and Rabia, B. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monit. Mainten., 7(3), 233-259. http://doi.org/10.12989/smm.2020.7.3.233.
  49. Tahar, H.D., Abderezak, R. and Rabia, B. (2021), "A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage", Struct. Eng. Mech., 79(5), 531. http://doi.org/10.12989/sem.2021.79.5.531.
  50. Tahar, H.D., Abderezak, R. and Rabia, B. (2021), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Couple. Syst. Mech., 10(5), 393-414. https://doi.org/10.12989/csm.2021.10.5.393.
  51. Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., 78(5), 573-583. http://doi.org/10.12989/sem.2021.78.5.573.
  52. Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Couple. Syst. Mech., 10(2), 161-184. http://doi.org/10.12989/csm.2021.10.2.161.
  53. Tahar, H.D., Boussad, A., Abderezak, R., Rabia, B., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4), 409-420. https://doi.org/10.12989/sem.2019.72.4.409.
  54. Thinh, T.I., Tu, T.M., Quoc, T.H. and Long, N.V. (2016), "Vibration and buckling analysis of functionally graded plates using new eight-unknown higher order shear deformation theory", Lat. Am. J. Solid. Struct., 13, 456-477. https://doi.org/10.1590/1679-78252522.
  55. Tlidji, Y., Benferhat, R., Daouadji, T.H., Tounsi, A. and Trinh, L.C. (2022), "Free vibration analysis of FGP nanobeams with classical and non-classical boundary conditions using State-space approach", Adv. Nano Res., 13(5), 453. https://doi.org/10.12989/anr.2022.13.5.453.
  56. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  57. Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2009), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhes. Adhesiv., 29(4), 343-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.
  58. Wang, J.F., Cao, S.H. and Zhang, W. (2021), "Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate", Eur. J. Mech.-A/Solid., 85, 104105. https://doi.org/10.1016/j.euromechsol.2020.104105.
  59. Zenkour, A.M. and Aljadani, M.H. (2022), "Buckling response of functionally graded porous plates due to a quasi-3D refined theory", Math., 10(4), 565. https://doi.org/10.3390/math10040565.
  60. Zghal, S., Trabelsi, S. and Dammak, F. (2021), "Thermomechanical buckling of FGM skew plate", International Conference Design and Modeling of Mechanical Systems, Cham, December. https://doi.org/10.1007/978-3-031-14615-2-10.
  61. Zohra, A., Rabia, B. and Tahar, H.D. (2023), "Critical thermal buckling analysis of porous FGP sandwich plates under various boundary conditions", Struct. Eng. Mech., 87(1), 29-46. https://doi.org/10.12989/sem.2023.87.1.029.