• Title/Summary/Keyword: Linear table

Search Result 373, Processing Time 0.025 seconds

Micropositioning of a Linear Motion Table with Magnetic Bearing Suspension (자기 베어링으로 지지 되는 직선운동 테이블의 초정밀 위치제어에 관한 연구)

  • 김의석;안형준;장인배;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.466-469
    • /
    • 1995
  • This paper presents a design and performance of the 6 D.O.F linear motion table with a magnetic bearing suspension. The linear positioning of the table with a 150mm stroke is driven by a brushless DC Linear motor and the other attitudes of the stage are controlled by the analog PD controller with magnetic bearing actuators. Each magnetic bearing unit which consists of 3 electromagnets, 3 capacitance probes and 3 backup bearings affords controlled forces by detecting the air gap between the probes and guideways. An integral type capacitance probe amplifier is equipped on the upper plate of the table so that the probe line to the probe amplifier can be shorter therefore the problems due to the stray capacitance and noise can be reduced. Form the pitch-yaw errormeasured by the autocollimator, the vertical and horizont straightness errors of the table are derived that they are maintained below 1.mu. m over 100mm stroke. The positioning accuracy of the linear motion is maintained below 2 .mu. m and the repeatability error is below 1 .mu. m

  • PDF

Development of Lightweight Moving Table for Linear Motor using Composite Materials (복합소재를 사용한 직선모터용 경량이송테이블 개발)

  • Hwang, Young-Kug;Eun, In-Ung;Lee, Choon-Man;Seo, Yong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • Linear motors are efficient mechanism that offers high speed and positioning accuracy. By eliminating mechanical transmission mechanisms, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. Therefore, it is necessary to design moving table with high stiffness, high efficiency and light weight construction. This paper presents the development of moving table using composite material. In order to develop light weight construction of moving table, finite element analysis is performed to find best moving table construction and composite stacking sequence. NASTRAN and MINITAB were used as the optimizer. A prototype for the moving table using composite material was created.

Investigation of Friction Hysteresis in Miniaturized Linear Table Lubricated Withgrease (그리스 윤활 소형 이송계 마찰력의 이력현상 측정 및 분석)

  • Ahn, Sung Woo;Jeong, Young Hun;Song, Chang Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.761-766
    • /
    • 2013
  • A precision linear motion table plays a crucial role in manufacturing systems used in various industries such as machine tools, semiconductors, and nanofabrication. In particular, one of the most typical mechanisms for a linear motion table is to use a ballscrew and LM guides. However, this mechanism is inevitably influenced by friction because of the relative motion in its joint regions. One of the most complex phenomena in friction is the hysteresis behavior of dynamic friction, which was compared with the steady dynamic friction that was presented using a Stribeck curve in this study. Therefore, we investigated the dynamic friction and its hysteresis behavior using a miniaturized linear table equipped with a ballscrew and LM guides that were lubricated with grease. Subsequently, it could be seen that hysteresis could be considered a time delay after zero-velocity crossing and that it was influenced by acceleration.

Reachable table of nonlinear cellular automata (비선형 셀룰라오토마타의 도달가능표)

  • Kwon, Sook-Hee;Cho, Sung-Jin;Choi, Un-Sook;Kim, Han-Doo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.593-598
    • /
    • 2015
  • Non-linear cellular automata is difficult to analyze mathematically than linear cellular automata. So it is difficult to identify reachable states and attractors of nongroup non-linear cellular automata than nongroup linear cellular automata. In this paper, we propose a new reachable table to overcome these problems. We can see the next state for all the states of the non-linear cellular automata by the proposed reachable table. In addition, we can identify reachable states and attractors by the reachable table.

Kinematic Analysis of Multi Axis Shaking Table for Multi-Purpose Test of Heavy Transport Vehicle (고하중 차량의 다목적 테스트를 위한 다축 가진 테이블의 기구학 해석)

  • Jin, Jae-Hyun;Na, Hong-Cheoul;Jeon, Seung-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.823-829
    • /
    • 2012
  • An excitation table is commonly used for vibration and ride tests for parts or assemblies of automobiles, aircrafts, or other heavy systems. The authors have analyzed several kinematic properties of an excitation table that is under development for heavy transport vehicles. It consists of one table and 7 linear hydraulic actuators. The authors have performed mobility analysis, inverse kinematics, forward kinematics, and singularity analysis. Especially, we have proposed a fast forward kinematic solution considering the limited motion of the excitation table. On the assumption that the motion variables such as rotation angles and displacements are small, the forward kinematic problem is converted to the observer problem of a linear system. This provides a fast solution. Also we have verified that there are no singularity points in the working range by numerical analysis.

Improvement of Motion Accuracy Using Active Controlled Capillary in Hydrostatic Table (능동제어모세관을 이용한 유정압테이블의 운동정도 향상)

  • Park, C.H.;Song, Y.C.;Lee, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.114-120
    • /
    • 1997
  • For compensating the error motion of hydrostatic tables, we have introduced a way that the clearance of table is controlled corresponding to the amount of eror with the actively controlled variable capillary, named as ACC. In previous paper, through the basic test, it was confirmed that by the use of ACC, the error motion within 2.7$\mu$ m of a hydrostatic table could be compensated with the resolution of 27nm, 1/100 contollable range, and with the frequency bandwidth of 5.5Hz, structurally. In this paper, we performed practical compensation of the linear and angular motion error of hydrostatic table using ACC. For improving the compensated motion accuracy, iterative control method is put into the control system. The experimental results show that by the simultaneous compensation of error, the linear and angular motion error are improved upto 0.25$\mu$ m and 0.4arcsec, which are about 1/10 and 1/3 of the non-compensated motion errors respectively.

  • PDF

Experimental Verification on Corrective machining Algorithm of Hydrostatic Table (유정압테이블 수정가공 알고리즘의 실험적 검증)

  • 박천홍;이찬홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.425-428
    • /
    • 1997
  • Effectiveness of corrective machining algorithm is verified experimentally in this paper by performing corrective lapping work to single side and double sides hydrostatic tables. Lapping is applied as machining method. Machining information is calculated from measured motion errors by applying the algorithm, without information on rail profile. It is possible to acquire 0.13pm of linear motion error, 1.40arcsec of angular motion error in the case of single side table, and 0.07pm of linear motion error, 1.42arcsec of angular motion error in the case of double sides table. The experiment is performed by the unskilled person after he experienced a little of preliminary machining. Experimental results show that corrective machining algorithm is very effective, and anyone can improve the accuracy of hydrostatic table by using the algorithm.

  • PDF

Improved Differential-Linear Cryptanalysis Using DLCT (DLCT를 활용한 향상된 차분선형 분석)

  • Kim, Hyunwoo;Kim, Seonggyeom;Hong, Deukjo;Sung, Jaechul;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1379-1392
    • /
    • 2018
  • The complexity of the differential-linear cryptanalysis is strongly influenced by the probability of the differential-linear characteristic computed under the assumption of round independence, linear approximation independence, and uniformity for the trail that does not satisfy differential trail. Therefore, computing the exact probability of the differential-linear characteristic is a very important issue related to the validity of the attack. In this paper, we propose a new concept called DLCT(Differential-Linear Connectivity Table) for the differential-linear cryptanalysis. Additionally, we propose an improved probability computation technique of differential-linear characteristic by applying DLCT. By doing so, we were able to weaken linear approximation independence assumption. We reanalyzed the previous results by applying DLCT to DES and SERPENT. The probability of 7-round differential-linear characteristic of DES is $1/2+2^{-5.81}$, the probability of 9-round differential-linear characteristic of SERPENT is computed again to $1/2+2^{-57.9}$, and data complexity required for the attack is reduced by $2^{0.2}$ and $2^{2.2}$ times, respectively.

Optimum Design of Transverse Flux Linear Motor for Maximizing Thrust Force Using Table of Orthogonal Array (직교배열표를 이용한 추력을 최대화하기 위한 횡자속 선형전동기의 최적설계)

  • Hong, Do Kwan;Woo, Byung Chul;Kang, Do Hvun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.505-510
    • /
    • 2005
  • On this study, we optimized maximizing the thrust force at the TFLM(Transverse Flux Linear Motor) using design of experiments by the table of orthogonal array and the analysis of means(ANOM), and classified the most contributive design factor maximizing the thrust force at the TFLM by analysis of variance(ANOVA). From now on, we are going to apply the required technique to design various uses and shapes of the TFLM.