In this paper, we propose an efficient soft decision decoding algorithm for linear block codes. A conventional soft decision decoder have to invoke a hard decision decoder several times to estimate its soft decision values. However, in this method, we may not have candidate codewords, thus it is very difficult to produce soft decision values. We solve this problem by introducing an efficient algorithm to search candidate codewords. By using this, we can highly reduce the cases we cannot find candidate codewords. We estimate the performance of the proposed algorithm by using the computer simulations. The simulation is performed for binary (63, 36) BCH code in fading channel.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.9
/
pp.2120-2133
/
2013
In this paper, we address the problem of linear minimum mean-squared error (MMSE) transmitter design for the cognitive radio (CR) multi-user multiple-input single-output (MU-MISO) broadcasting channel (BC), where the cognitive users are subject to not only a sum power constraint, but also a interference power constraint. Evidently, this multi-constraint problem renders it difficult to solve. To overcome this difficulty, we firstly transform it into its equivalent formulation with a single constraint. Then by utilizing BC-MAC duality, the problem of BC transmitter design can be solved by focusing on a dual MAC problem, which is easier to deal with due to its convexity property. Finally we propose an efficient two-level iterative algorithm to search the optimal solution. Our simulation results are provided to corroborate the effectiveness of the proposed algorithm and show that this proposed CR MMSE-based scheme achieves a suboptimal sum-rate performance compared to the optimal DPC-based algorithm with less computational complexity.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.8
/
pp.2157-2177
/
2024
Demand response (DR) refers to the customers' active reaction with respect to the changes of market pricing or incentive policies. DR plays an important role in improving network reliability, minimizing operational cost and increasing end users' benefits. Hence, the integration of DR in the microgrid (MG) management is gaining increasing popularity nowadays. This paper proposes a day-ahead MG scheduling framework in conjunction with DR and investigates the impact of DR in optimizing load profile and reducing overall power generation costs. A linear responsive model considering time of use (TOU) price and incentive is developed to model the active reaction of customers' consumption behaviors. Thereafter, a novel multi-swarm sine cosine algorithm (MSCA) is proposed to optimize the total power generation costs in the framework. In the proposed MSCA, several sub-swarms search for better solutions simultaneously which is beneficial for improving the population diversity. A cooperative learning scheme is developed to realize knowledge dissemination in the population and a competitive substitution strategy is proposed to prevent local optima stagnation. The simulation results obtained by the proposed MSCA are compared with other meta-heuristic algorithms to show its effectiveness in reducing overall generation costs. The outcomes with and without DR suggest that the DR program can effectively reduce the total generation costs and improve the stability of the MG network.
Journal of the Computational Structural Engineering Institute of Korea
/
v.33
no.4
/
pp.217-224
/
2020
In this study, a framework for optimizing the opening in an outrigger wall is proposed. To solve a constrained bounded optimization problem, an in-house finite element program and SQP algorithm in Python SciPy library are utilized. The openings of the outrigger wall are located according to the strut-tie behavior of the outrigger wall deep beam. A linear interpolation method is used to obtain differentiable continuous functions required for optimization, whereas a database is used for the efficiency of the optimization program. By comparing the result of the two-variable optimization through the moving path of the search algorithm, it is confirmed that the algorithm efficiently determines the optimized result. When the size of each opening is set to individual variables rather than the same width of all openings, the value of the objective function is minimized to obtain better optimization results. It was confirmed that the optimization time can be effectively reduced when using the database in the optimization process.
In this paper, we propose a modified unsupervised linear alignment algorithm for building an aligned corpus. The original algorithm inserts null characters into both of two aligned strings (source string and target string), because the two strings are different from each other in length. This can cause some difficulties like the search space explosion for applications using the aligned corpus with null characters and no possibility of applying to several machine learning algorithms. To alleviate these difficulties, we modify the algorithm not to contain null characters in the aligned source strings. We have shown the usability of our approach by applying it to different areas such as Korean-English back-trans literation, English grapheme-phoneme conversion, and Korean morphological analysis.
Journal of Institute of Control, Robotics and Systems
/
v.19
no.8
/
pp.725-730
/
2013
This paper proposed a novel method for an analysis feature of an Electroencephalogram (EEG) at all channels simultaneously. In a BCI (Brain-Computer Interface) system, EEGs are used to control a machine or computer. The EEG signals were weak to noise and had low spatial resolution because they were acquired by a non-invasive method involving, attaching electrodes along with scalp. This made it difficult to analyze the whole channel of EEG signals. And the previous method could not analyze multiple stimuli, the result being that the BCI system could not react to multiple orders. The method proposed in this paper made it possible analyze multiple-stimuli by grouping the channels. We searched the groups making the largest correlation coefficient summation of every member of the group with a BHS (Binary Harmony Search) algorithm. Then we assumed the EEG signal could be written in linear summation of groups using concentration parameters. In order to verify this assumption, we performed a simulation of three subjects, 60 times per person. From the simulation, we could obtain the groups of EEG signals. We also established the types of stimulus from the concentration coefficient. Consequently, we concluded that the signal could be divided into several groups. Furthermore, we could analyze the EEG in a new way with concentration coefficients from the EEG channel grouping.
The major drawback to the Code Excited Linear Prediction(CELP) type vocoders is their large computational requirements. In this paper, a simple method is proposed to reduce the pitch searching time in the pitch filter almost without degradation of quality. Bease upon the observational regularity of the correlation function of speech, the searching range can be restricted to the positive side in pitch search. This is done by skipping the negative side with the width which is estimated from the previous positive envelope. In addition to that, the maximum number of available lags can be limited by the threshold, $L_T$, which is set on 58 empirically. So, only the limited numbers of lags are considered in pitch search, which is less than a half of that of the full search method. By using the proposed method in pitch search, its required computations are greatly reduced. Experimental result shows 51% time reduction almost without lowering the speech quality in segmental SNR measure.
This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.
The continuous data such as video streams and voice analog signals can be modeled as multidimensional data sequences(MDS's) in the feature space, In this paper, we investigate the clustering technique for multidimensional data sequence, Each sequence is represented by a small number by hyper rectangular clusters for subsequent storage and similarity search processing. We present a linear clustering algorithm that guarantees a predefined level of clustering quality and show its effectiveness via experiments on various video data sets.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.388-388
/
2019
하도 홍수추적의 방법은 크게 수리학적 방법과 수문학적 방법으로 구분할 수 있다. 수리학적 홍수추적 방법은 정확하지만 대량의 자료가 필요하고 시간이 오래 걸린다. 이와 반대로 수문학적 홍수추적 방법은 정확성은 떨어지지만 소량의 자료만 있으면 되고 시간이 적게 걸린다. 여러 수문학적 홍수추적에 관한 연구들이 있으며 대표적으로 Muskingum 방법이 있다. Muskingum 방법 중 Linear Muskingum Model(LMM)은 방정식의 구조적 한계 때문에 정확한 홍수추적이 어려웠고, 이를 개선하기위하여 Nonlinear Muskingum Model(NLMM), Nonlinear Muskingum Model Incorporation Lateral Flow(NLMM-L) 및 Advanced Nonlinear Muskingum Model Incorporating Lateral Flow(ANLMM-L)이 제안되었다. 본 연구는 수문학적 홍수추적 중 Muskingum 방법의 결과 차이가 어떤 요인으로 인해 발생하는지 검토하였다. 최적화 알고리즘으로 화음탐색법(Harmony Search, HS)을 사용하였으며 LMM, NLMM, NLMM-L 및 ANLMM-L의 매개변수를 산정하였다. 각 방법에 적용 시 HS의 매개변수에 변화를 주어 민감도 분석을 실시하였으며, 분석을 위한 홍수자료는 The Willson Flood data (1947)를 선택하였다. 오차비교방법은 Sum of Squares(SSQ), Root Mean Square Errors(RMSE), Nash-Sutcliffe Efficiency(NSE)를 비교하였다. 비교 결과 알고리즘의 성능에 의한 차이보다 홍수추적 방법의 차이가 더 영향이 큰 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.