• Title/Summary/Keyword: Linear relation

Search Result 1,181, Processing Time 0.035 seconds

On the two different sequences of the mass-size relation for early-type galaxies

  • Kim, Jin-Ah;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.48.3-49
    • /
    • 2015
  • Scaling relations of early-type galaxies (ETG) provide a deep insight into their formation and evolution. Interestingly enough, most relations extending into the dwarf regimes display non-linear or broken-linear features, unlike the linear relations for normal (i.e., intermediate-mass to giant) ETGs only. Here we investigate the mass-size scaling relation of ETGs using a massive database of galaxies from SDSS DR12. We divide ETGs into two groups by the indication of star formation such as colors, and examine their distinction along the mass-size relation. We find that the mass-size distribution of blue, young normal galaxies is in good agreement with that of dwarf ETGs. Our result suggests that blue, young normal ETGs may serve as links between (passive) normal ETGs and dwarfs. We discuss the possibility of blue, young ETGs being progenitors of dwarf ETGs.

  • PDF

JULIA OPERATORS AND LINEAR SYSTEMS (NONUNIQUENESS OF LINEAR SYSTEMS)

  • Yang, Mee-Hyea
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 1996
  • Complementation theory in krein spaces can be extended for any self-adjoint transformation. There is a close relation between Julia operators and linear systems. The theory of Julia operators can be used to construct distinct Krein spaces which are the state spaces of extended canonical linear systems with given transfer function.

Stock Forecasting using Stock Index Relation and Genetic Algorithm (주가지수 관계와 유전자 알고리즘을 이용한 주식예측)

  • Kim, Sang-Ho;Kim, Dong-Hyun;Han, Chang-Hee;Kim, Won-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.781-786
    • /
    • 2008
  • In this paper, we propose a novel approach predicting the fluctuation of stock index by finding a relation in various stock indexes that are represented by linear combinations. The important points are to select stock indexes related to predicting indexes and to find the proper relations in them. Since it is unattainable to use entire stock indexes relation, we used only data that are closely associated with each other. We used Genetic Algorithm(GA) to find the most suitable stock-index relation. We simulated the investment in years from 2005 to 2007 with each real index. Finally we verified that the investment money increased 230 percents by the proposed method.

A Review of Teaching the Concept of the Matrix in relation to Historico-Genetic Principle (역사발생적 관점에서 본 행렬 지도의 재음미)

  • Cho, Seong-Min
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.1
    • /
    • pp.99-114
    • /
    • 2009
  • Although they are interested in Linear Algebra not only in science and engineering but also in humanities and sociology recently, a study of teaching linear algebra is not relatively abundant because linear algebra was taken as basic course in colleges just for 20-30 years. However, after establishing The Linear Algebra Curriculum Study Group in January, 1990, a variety of attempts to improve teaching linear algebra have been emerging. This article looks into series of studies related with teaching matrix. For this the method for teaching the concepts of matrix in relation to historico-genetic principle looking through the process of the conceptual development of matrix-determinants, matrix-systems of linear equations and linear transformation.

  • PDF

SUPER-MASSIVE BLACK HOLE MASS SCALING RELATIONS

  • GRAHAM, ALISTER W.;SCOTT, NICHOLAS;SCHOMBERT, JAMES M.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.335-339
    • /
    • 2015
  • Using black hole masses which span $10^5-10^{10}M_{\odot}$, the distribution of galaxies in the (host spheroid stellar mass)-(black hole mass) diagram is shown to be strongly bent. While the core-$S{\acute{e}}rsic$ galaxies follow a near-linear relation, having a mean $M_{bh}/M_{sph}$ mass ratio of ~0.5%, the $S{\acute{e}}rsic$ galaxies follow a near-quadratic relation. This is not due to offset pseudobulges, but is instead an expected result arising from the long-known bend in the $M_{sph}{-{\sigma}}$ relation and a log-linear $M_{bh}{-{\sigma}}$ relation.

Controller Structure and Performance According to Linearization Methods in the Looper ILQ Control for Hot Strip Finishing Mills (열간사상압연기의 루퍼 ILQ 제어에 있어 선형화 기법에 따른 제어기 구조 및 성능)

  • Park, Cheol-Jae;Hwang, I-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • This paper studies on the relation between linearization methods and controller gains in the looper ILQ(lnverse Linear Quadratic optimal control) system for hot strip finishing mills. Firstly, two linear models arc respectively derived by a linearization method using Taylor's series expansion and a static state feedback linearization method, respectively, and the linear models are compared with the nonlinear model. Secondly, the looper servo controllers are respectively designed on the basis of two linearization models. Finally, the relation between the performances of two ILQ servo controllers and the linearization methods, and the structures and control gains of two controllers are evaluated by a computer simulation.

Mathematical Programming Models for Establishing Dominance with Hierarchically Structured Attribute Tree (계층구조의 속성을 가지는 의사결정 문제의 선호순위도출을 위한 수리계획모형)

  • Han, Chang-Hee
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.2
    • /
    • pp.34-55
    • /
    • 2002
  • This paper deals with the multiple attribute decision making problem when a decision maker incompletely articulates his/her preferences about the attribute weight and alternative value. Furthermore, we consider the attribute tree which is structured hierarchically. Techniques for establishing dominance with linear partial information are proposed in a hierarchically structured attribute tree. The linear additive value function under certainty is used in the model. The incompletely specified information constructs a feasible region of linear constraints and therefore the pairwise dominance relationship between alternatives leads to intractable non-linear programming. Hence, we propose solution techniques to handle this difficulty. Also, to handle the tree structure, we break down the attribute tree into sub-trees. Due to there cursive structure of the solution technique, the optimization results from sub-trees can be utilized in computing the value interval on the topmost attribute. The value intervals computed by the proposed solution techniques can be used to establishing the pairwise dominance relation between alternatives. In this paper, pairwise dominance relation will be represented as strict dominance and weak dominance, which ware already defined in earlier researches.

Building Detection Using Segment Measure Function and Line Relation

  • Ye, Chul-Soo;Kim, Gyeong-Hwan;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.177-181
    • /
    • 1999
  • This paper presents an algorithm for building detection from aerial image using segment measure function and line relation. In the detection algorithm proposed, edge detection, linear approximation and line linking are used and then line measure function is applied to each line segment in order to improve the accuracy of linear approximation. Parallelisms, orthogonalities are applied to the extracted liner segments to extract building. The algorithm was applied to aerial image and the buildings were accurately detected.

  • PDF

ZERO-KNOWLEDGE PROOFS FROM SPLWE-BASED COMMITMENTS

  • Kim, Jinsu;Kim, Dooyoung
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • Recently, an LWE-based commitment scheme is proposed. Their construction is statistically hiding as well as computationally binding. On the other hand, the construction of related zero-knowledge protocols is left as an open problem. In this paper, we present zero-knowledge protocols with hardness based on the LWE problem. we show how to instantiate efficient zero-knowledge protocols that can be used to prove linear and sum relations among these commitments. In addition, we show how the variant of LWE, spLWE problem, can be used to instantiate efficient zero-knowledge protocols.